Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
29 "Inflammation"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Basic Research
Article image
Roles of Histone Deacetylase 4 in the Inflammatory and Metabolic Processes
Hyunju Kang, Young-Ki Park, Ji-Young Lee, Minkyung Bae
Diabetes Metab J. 2024;48(3):340-353.   Published online March 22, 2024
DOI: https://doi.org/10.4093/dmj.2023.0174
  • 1,241 View
  • 104 Download
AbstractAbstract PDFPubReader   ePub   
Histone deacetylase 4 (HDAC4), a class IIa HDAC, has gained attention as a potential therapeutic target in treating inflammatory and metabolic processes based on its essential role in various biological pathways by deacetylating non-histone proteins, including transcription factors. The activity of HDAC4 is regulated at the transcriptional, post-transcriptional, and post-translational levels. The functions of HDAC4 are tissue-dependent in response to endogenous and exogenous factors and their substrates. In particular, the association of HDAC4 with non-histone targets, including transcription factors, such as myocyte enhancer factor 2, hypoxia-inducible factor, signal transducer and activator of transcription 1, and forkhead box proteins, play a crucial role in regulating inflammatory and metabolic processes. This review summarizes the regulatory modes of HDAC4 activity and its functions in inflammation, insulin signaling and glucose metabolism, and cardiac muscle development.
Original Articles
Basic research
Article image
Reducing Oxidative Stress and Inflammation by Pyruvate Dehydrogenase Kinase 4 Inhibition Is Important in Prevention of Renal Ischemia-Reperfusion Injury in Diabetic Mice
Ah Reum Khang, Dong Hun Kim, Min-Ji Kim, Chang Joo Oh, Jae-Han Jeon, Sung Hee Choi, In-Kyu Lee
Diabetes Metab J. 2024;48(3):405-417.   Published online February 1, 2024
DOI: https://doi.org/10.4093/dmj.2023.0196
  • 1,546 View
  • 155 Download
  • 2 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Reactive oxygen species (ROS) and inflammation are reported to have a fundamental role in the pathogenesis of ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury. The present study investigated the role of pyruvate dehydrogenase kinase 4 (PDK4) in ROS production and inflammation following IR injury.
Methods
We used a streptozotocin-induced diabetic C57BL6/J mouse model, which was subjected to IR by clamping both renal pedicles. Cellular apoptosis and inflammatory markers were evaluated in NRK-52E cells and mouse primary tubular cells after hypoxia and reoxygenation using a hypoxia work station.
Results
Following IR injury in diabetic mice, the expression of PDK4, rather than the other PDK isoforms, was induced with a marked increase in pyruvate dehydrogenase E1α (PDHE1α) phosphorylation. This was accompanied by a pronounced ROS activation, as well as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) production. Notably, sodium dichloroacetate (DCA) attenuated renal IR injury-induced apoptosis which can be attributed to reducing PDK4 expression and PDHE1α phosphorylation levels. DCA or shPdk4 treatment reduced oxidative stress and decreased TNF-α, IL-6, IL-1β, and MCP-1 production after IR or hypoxia-reoxygenation injury.
Conclusion
PDK4 inhibition alleviated renal injury with decreased ROS production and inflammation, supporting a critical role for PDK4 in IR mediated damage. This result indicates another potential target for reno-protection during IR injury; accordingly, the role of PDK4 inhibition needs to be comprehensively elucidated in terms of mitochondrial function during renal IR injury.

Citations

Citations to this article as recorded by  
  • Exploring Renal Pyruvate Metabolism as a Therapeutic Avenue for Diabetic Kidney Injury
    Jaemin Lee
    Diabetes & Metabolism Journal.2024; 48(3): 385.     CrossRef
  • Cardiovascular Disease and miRNAs: Possible Oxidative Stress-Regulating Roles of miRNAs
    Seahyoung Lee
    Antioxidants.2024; 13(6): 656.     CrossRef
Drug/Regimen
Article image
Comparative Efficacy of Rosuvastatin Monotherapy and Rosuvastatin/Ezetimibe Combination Therapy on Insulin Sensitivity and Vascular Inflammatory Response in Patients with Type 2 Diabetes Mellitus
Ji Hye Han, Kyong Hye Joung, Jun Choul Lee, Ok Soon Kim, Sorim Choung, Ji Min Kim, Yea Eun Kang, Hyon-Seung Yi, Ju Hee Lee, Bon Jeong Ku, Hyun Jin Kim
Diabetes Metab J. 2024;48(1):112-121.   Published online January 3, 2024
DOI: https://doi.org/10.4093/dmj.2022.0402
  • 2,955 View
  • 281 Download
  • 1 Web of Science
  • 3 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Type 2 diabetes mellitus (T2DM) induces endothelial dysfunction and inflammation, which are the main factors for atherosclerosis and cardiovascular disease. The present study aimed to compare the effects of rosuvastatin monotherapy and rosuvastatin/ezetimibe combination therapy on lipid profile, insulin sensitivity, and vascular inflammatory response in patients with T2DM.
Methods
A total of 101 patients with T2DM and dyslipidemia were randomized to either rosuvastatin monotherapy (5 mg/day, n=47) or rosuvastatin/ezetimibe combination therapy (5 mg/10 mg/day, n=45) and treated for 12 weeks. Serum lipids, glucose, insulin, soluble intercellular adhesion molecule-1 (sICAM-1), and peroxiredoxin 4 (PRDX4) levels were determined before and after 12 weeks of treatment.
Results
The reduction in low density lipoprotein cholesterol (LDL-C) by more than 50% from baseline after treatment was more in the combination therapy group. The serum sICAM-1 levels increased significantly in both groups, but there was no difference between the two groups. The significant changes in homeostasis model assessment of insulin resistance (HOMA-IR) and PRDX4 were confirmed only in the subgroup in which LDL-C was reduced by 50% or more in the combination therapy group. However, after adjusting for diabetes mellitus duration and hypertension, the changes in HOMA-IR and PRDX4 were not significant between the two groups.
Conclusion
Although rosuvastatin/ezetimibe combination therapy had a greater LDL-C reduction effect than rosuvastatin monotherapy, it had no additional effects on insulin sensitivity and vascular inflammatory response. Further studies are needed on the effect of long-term treatment with ezetimibe on insulin sensitivity and vascular inflammatory response.

Citations

Citations to this article as recorded by  
  • Combining Ezetimibe and Rosuvastatin: Impacts on Insulin Sensitivity and Vascular Inflammation in Patients with Type 2 Diabetes Mellitus
    Eun Roh
    Diabetes & Metabolism Journal.2024; 48(1): 55.     CrossRef
  • Does Rosuvastatin/Ezetimibe Combination Therapy Offer Potential Benefits for Glucose Metabolism beyond Lipid-Lowering Efficacy in T2DM?
    Il Rae Park, Jun Sung Moon
    Diabetes & Metabolism Journal.2024; 48(3): 387.     CrossRef
  • A Comparison of Rosuvastatin Monotherapy and Rosuvastatin Plus Ezetimibe Combination Therapy in Patients With Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials
    Samuel K Dadzie, Godfrey Tabowei, Mandeep Kaur, Saeed Ahmed, Aayushi Thakur, Khaldoun Khreis, Monika Bai, Adil Amin
    Cureus.2024;[Epub]     CrossRef
Basic Research
Article image
DWN12088, A Prolyl-tRNA Synthetase Inhibitor, Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis
Dong-Keon Lee, Su Ho Jo, Eun Soo Lee, Kyung Bong Ha, Na Won Park, Deok-Hoon Kong, Sang-In Park, Joon Seok Park, Choon Hee Chung
Diabetes Metab J. 2024;48(1):97-111.   Published online January 3, 2024
DOI: https://doi.org/10.4093/dmj.2022.0367
  • 2,242 View
  • 194 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Nonalcoholic steatohepatitis (NASH) is a liver disease caused by obesity that leads to hepatic lipoapoptosis, resulting in fibrosis and cirrhosis. However, the mechanism underlying NASH is largely unknown, and there is currently no effective therapeutic agent against it. DWN12088, an agent used for treating idiopathic pulmonary fibrosis, is a selective prolyl-tRNA synthetase (PRS) inhibitor that suppresses the synthesis of collagen. However, the mechanism underlying the hepatoprotective effect of DWN12088 is not clear. Therefore, we investigated the role of DWN12088 in NASH progression.
Methods
Mice were fed a chow diet or methionine-choline deficient (MCD)-diet, which was administered with DWN12088 or saline by oral gavage for 6 weeks. The effects of DWN12088 on NASH were evaluated by pathophysiological examinations, such as real-time quantitative reverse transcription polymerase chain reaction, immunoblotting, biochemical analysis, and immunohistochemistry. Molecular and cellular mechanisms of hepatic injury were assessed by in vitro cell culture.
Results
DWN12088 attenuated palmitic acid (PA)-induced lipid accumulation and lipoapoptosis by downregulating the Rho-kinase (ROCK)/AMP-activated protein kinase (AMPK)/sterol regulatory element-binding protein-1c (SREBP-1c) and protein kinase R-like endoplasmic reticulum kinase (PERK)/α subunit of eukaryotic initiation factor 2 (eIF2α)/activating transcription factor 4 (ATF4)/C/EBP-homologous protein (CHOP) signaling cascades. PA increased but DWN12088 inhibited the phosphorylation of nuclear factor-κB (NF-κB) p65 (Ser536, Ser276) and the expression of proinflammatory genes. Moreover, the DWN12088 inhibited transforming growth factor β (TGFβ)-induced pro-fibrotic gene expression by suppressing TGFβ receptor 1 (TGFβR1)/Smad2/3 and TGFβR1/glutamyl-prolyl-tRNA synthetase (EPRS)/signal transducer and activator of transcription 6 (STAT6) axis signaling. In the case of MCD-diet-induced NASH, DWN12088 reduced hepatic steatosis, inflammation, and lipoapoptosis and prevented the progression of fibrosis.
Conclusion
Our findings provide new insights about DWN12088, namely that it plays an important role in the overall improvement of NASH. Hence, DWN12088 shows great potential to be developed as a new integrated therapeutic agent for NASH.
Basic Research
Article image
A New Concept in Antidiabetic Therapeutics: A Concerted Removal of Labile Iron and Intracellular Deposition of Zinc
Vladimir Vinokur, Eduard Berenshtein, Mordechai Chevion, Dror Chevion
Diabetes Metab J. 2024;48(1):59-71.   Published online January 3, 2024
DOI: https://doi.org/10.4093/dmj.2022.0292
Retraction in: Diabetes Metab J 2024;48(2):325
  • 1,968 View
  • 178 Download
Reviews
Basic Research
Article image
Adipose Tissue and Metabolic Health
Sung-Min An, Seung-Hee Cho, John C. Yoon
Diabetes Metab J. 2023;47(5):595-611.   Published online July 24, 2023
DOI: https://doi.org/10.4093/dmj.2023.0011
  • 5,262 View
  • 507 Download
  • 5 Web of Science
  • 6 Crossref
AbstractAbstract PDFPubReader   ePub   
In this review, we provide a brief synopsis of the connections between adipose tissue and metabolic health and highlight some recent developments in understanding and exploiting adipocyte biology. Adipose tissue plays critical roles in the regulation of systemic glucose and lipid metabolism and secretes bioactive molecules possessing endocrine, paracrine, and autocrine functions. Dysfunctional adipose tissue has a detrimental impact on metabolic health and is intimately involved in key aspects of metabolic diseases such as insulin resistance, lipid overload, inflammation, and organelle stress. Differences in the distribution of fat depots and adipose characteristics relate to divergent degrees of metabolic dysfunction found in metabolically healthy and unhealthy obese individuals. Thermogenic adipocytes increase energy expenditure via mitochondrial uncoupling or adenosine triphosphate-consuming futile substrate cycles, while functioning as a metabolic sink and participating in crosstalk with other metabolic organs. Manipulation of adipose tissue provides a wealth of opportunities to intervene and combat the progression of associated metabolic diseases. We discuss current treatment modalities for obesity including incretin hormone analogs and touch upon emerging strategies with therapeutic potential including exosome-based therapy, pharmacological activation of brown and beige adipocyte thermogenesis, and administration or inhibition of adipocyte-derived factors.

Citations

Citations to this article as recorded by  
  • Pharmacological targets at the lysosomal autophagy–NLRP3 inflammasome crossroads
    Srinivasa Reddy Bonam, Dylan Mastrippolito, Philippe Georgel, Sylviane Muller
    Trends in Pharmacological Sciences.2024; 45(1): 81.     CrossRef
  • Senescent adipocytes and type 2 diabetes – current knowledge and perspective concepts
    Weronika Kruczkowska, Julia Gałęziewska, Mateusz Kciuk, Adrianna Gielecińska, Elżbieta Płuciennik, Zbigniew Pasieka, Lin-Yong Zhao, Yi-Jin Yu, Damian Kołat, Żaneta Kałuzińska-Kołat
    Biomolecular Concepts.2024;[Epub]     CrossRef
  • Visceral Adipose Tissue: The Hidden Culprit for Type 2 Diabetes
    Sneha Dhokte, Krzysztof Czaja
    Nutrients.2024; 16(7): 1015.     CrossRef
  • Beyond the Cold: Activating Brown Adipose Tissue as an Approach to Combat Obesity
    Cristina Elena Negroiu, Iulia Tudorașcu, Cristina Maria Bezna, Sanziana Godeanu, Marina Diaconu, Raluca Danoiu, Suzana Danoiu
    Journal of Clinical Medicine.2024; 13(7): 1973.     CrossRef
  • Differential Modulation by Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) of Mesenteric Fat and Macrophages and T Cells in Adipose Tissue of Obese fa/fa Zucker Rats
    Lena Hong, Peter Zahradka, Carla G. Taylor
    Nutrients.2024; 16(9): 1311.     CrossRef
  • Omics Insights into Epicardial Adipose Tissue: Unravelling Its Molecular Landscape
    Ivona Mitu, Roxana Popescu, Cristina-Daniela Dimitriu, Radu-Ștefan Miftode, Irina-Iuliana Costache, Ovidiu Mitu
    Applied Sciences.2024; 14(10): 4173.     CrossRef
Basic Research
Article image
Multiple Roles of Sirtuin 6 in Adipose Tissue Inflammation
Eun Ju Bae, Byung-Hyun Park
Diabetes Metab J. 2023;47(2):164-172.   Published online January 12, 2023
DOI: https://doi.org/10.4093/dmj.2022.0270
  • 4,119 View
  • 234 Download
  • 4 Web of Science
  • 2 Crossref
AbstractAbstract PDFPubReader   ePub   
Adipose tissue (AT) inflammation is strongly associated with obesity-induced insulin resistance. When subjected to metabolic stress, adipocytes become inflamed and secrete a plethora of cytokines and chemokines, which recruit circulating immune cells to AT. Although sirtuin 6 (Sirt6) is known to control genomic stabilization, aging, and cellular metabolism, it is now understood to also play a pivotal role in the regulation of AT inflammation. Sirt6 protein levels are reduced in the AT of obese humans and animals and increased by weight loss. In this review, we summarize the potential mechanism of AT inflammation caused by impaired action of Sirt6 from the immune cells’ point of view. We first describe the properties and functions of immune cells in obese AT, with an emphasis on discrete macrophage subpopulations which are central to AT inflammation. We then highlight data that links Sirt6 to functional phenotypes of AT inflammation. Importantly, we discuss in detail the effects of Sirt6 deficiency in adipocytes, macrophages, and eosinophils on insulin resistance or AT browning. In our closing perspectives, we discuss emerging issues in this field that require further investigation.

Citations

Citations to this article as recorded by  
  • The Role of Increased Expression of Sirtuin 6 in the Prevention of Premature Aging Pathomechanisms
    Adrianna Dzidek, Olga Czerwińska-Ledwig, Małgorzata Żychowska, Wanda Pilch, Anna Piotrowska
    International Journal of Molecular Sciences.2023; 24(11): 9655.     CrossRef
  • Exploring the Influence of Age, Gender and Body Mass Index on Colorectal Cancer Location
    Dorel Popovici, Cristian Stanisav, Sorin Saftescu, Serban Negru, Radu Dragomir, Daniel Ciurescu, Razvan Diaconescu
    Medicina.2023; 59(8): 1399.     CrossRef
Original Article
Lifestyle
Article image
Effectiveness of Resistance Exercise on Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Systematic Review with Meta-Analysis
Rubén Fernández-Rodríguez, Sonia Monedero-Carrasco, Bruno Bizzozero-Peroni, Miriam Garrido-Miguel, Arthur Eumann Mesas, Vicente Martínez-Vizcaíno
Diabetes Metab J. 2023;47(1):118-134.   Published online April 29, 2022
DOI: https://doi.org/10.4093/dmj.2022.0007
  • 10,285 View
  • 321 Download
  • 10 Web of Science
  • 11 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Type 2 diabetes mellitus (T2DM) is related to increased inflammatory processes. The effects of resistance exercise on inflammatory biomarkers in T2DM are controversial. Our purpose was to determine the effectiveness of resistance exercise on inflammatory biomarkers in patients diagnosed with T2DM.
Methods
We searched four databases until September 2021. We included randomized clinical trials (RCTs) of the effects of resistance exercise on inflammatory biomarkers (C-reactive protein [CRP], tumor necrosis factor alpha, interleukin-6, and interleukin-10) in patients with T2DM. A random effects meta-analysis was conducted to determine the standardized mean difference (SMD) and the raw mean difference (MD) for CRP.
Results
Thirteen RCTs were included in the review, and 11 in the meta-analysis for CRP. Lower CRP levels were observed when resistance exercise was compared with the control groups (SMD=–0.20; 95% confidence interval [CI], –0.37 to –0.02). When conducting the MD meta-analysis, resistance exercise showed a significant decrease in CRP of –0.59 mg/dL (95% CI, –0.88 to –0.30); otherwise, in the control groups, the CRP values increased 0.19 mg/dL (95% CI, 0.17 to 0.21).
Conclusion
Evidence supports resistance exercise as an effective strategy to manage systemic inflammation by decreasing CRP levels in patients with T2DM. The evidence is still inconclusive for other inflammatory biomarkers.

Citations

Citations to this article as recorded by  
  • Körperliche Aktivität und Trainingstherapie bei Typ-2-Diabetes – ein Update
    Andreas M. Nieß, Ansgar Thiel
    Diabetologie und Stoffwechsel.2024; 19(01): 38.     CrossRef
  • Genetic predisposition, lifestyle inflammation score, food-based dietary inflammatory index, and the risk for incident diabetes: Findings from the KoGES data
    Hye Ah Lee, Hyesook Park, Bomi Park
    Nutrition, Metabolism and Cardiovascular Diseases.2024; 34(3): 642.     CrossRef
  • Associations of meeting 24-h movement guidelines and metabolic syndrome in Korean adults during the COVID-19 pandemic
    S.W. Shin, Y. Choi, Y.H. Kang, J. Kim
    Public Health.2024; 227: 187.     CrossRef
  • Association of hypoglycemic events with cognitive impairment in patients with type 2 diabetes mellitus: Protocol for a dose-response meta-analysis
    Min Ye, Ai Hong Yuan, Qi Qi Yang, Qun Wei Li, Fei Yue Li, Yan Wei, Muhammad Shahzad Aslam
    PLOS ONE.2024; 19(2): e0296662.     CrossRef
  • Exercise Interventions for the Prevention and Treatment of Anthracycline-Induced Cardiotoxicity in Women with Breast Cancer: A Systematic Review
    Hongmei Li, Haiyun Liu, Boliang Wang, Xiao Jia, Jingjing Yu, Yurong Zhang, Die Sang, Yimin Zhang
    Journal of Science in Sport and Exercise.2024;[Epub]     CrossRef
  • Effectiveness of resistance training in modulating inflammatory biomarkers among Asian patients with sarcopenia: a systematic review and meta-analysis of randomized controlled trials
    Jingxian Xue, Xi Han, Yan Zheng, Qiuxia Zhang, Lingyu Kong
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Additive impact of diabetes and sarcopenia on all-cause and cardiovascular mortality: A longitudinal nationwide population-based study
    Eyun Song, Soon Young Hwang, Min Jeong Park, Ahreum Jang, Kyeong Jin Kim, Ji Hee Yu, Nam Hoon Kim, Hye Jin Yoo, Ji A. Seo, Sin Gon Kim, Nan Hee Kim, Sei Hyun Baik, Kyung Mook Choi
    Metabolism.2023; 148: 155678.     CrossRef
  • Endothelial progenitor cell response to a multicomponent exercise training program in adults with cardiovascular risk factors
    Suiane Cavalcante, Manuel Teixeira, Marisol Gouveia, Ana Duarte, Miriam Ferreira, Maria I. Simões, Maria Conceição, Mariana Costa, Ilda P. Ribeiro, Ana Cristina Gonçalves, José Oliveira, Fernando Ribeiro
    German Journal of Exercise and Sport Research.2023; 53(2): 225.     CrossRef
  • “Does Physical Exercise Promote Health Benefits for Diabetic Patients during the COVID-19 Pandemic?”: A Systematic Review
    Erivaldo de Souza, Daniela Meneses-Santos, Josué Cruz Santos, Felipe J. Aidar, Carla Roberta de Oliveira Carvalho, Jymmys Lopes dos Santos, Anderson Carlos Marçal
    Sports.2023; 11(10): 192.     CrossRef
  • Effect of exercise on inflammatory markers in postmenopausal women with overweight and obesity: A systematic review and meta-analysis
    Liang Tan, Weihua Yan, Weilin Yang, Agata Kamionka, Mariusz Lipowski, Zijian Zhao, Gang Zhao
    Experimental Gerontology.2023; 183: 112310.     CrossRef
  • Resistance Training Improves Beta Cell Glucose Sensing and Survival in Diabetic Models
    Gabriela Alves Bronczek, Gabriela Moreira Soares, Carine Marmentini, Antonio Carlos Boschero, José Maria Costa-Júnior
    International Journal of Molecular Sciences.2022; 23(16): 9427.     CrossRef
Review
Complications
Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease
Chan-Young Jung, Tae-Hyun Yoo
Diabetes Metab J. 2022;46(2):181-197.   Published online March 24, 2022
DOI: https://doi.org/10.4093/dmj.2021.0329
  • 13,536 View
  • 839 Download
  • 42 Web of Science
  • 47 Crossref
AbstractAbstract PDFPubReader   ePub   
Although diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease eventually requiring chronic kidney replacement therapy, the prevalence of DKD has failed to decline over the past 30 years. In order to reduce disease prevalence, extensive research has been ongoing to improve prediction of DKD onset and progression. Although the most commonly used markers of DKD are albuminuria and estimated glomerular filtration rate, their limitations have encouraged researchers to search for novel biomarkers that could improve risk stratification. Considering that DKD is a complex disease process that involves several pathophysiologic mechanisms such as hyperglycemia induced inflammation, oxidative stress, tubular damage, eventually leading to kidney damage and fibrosis, many novel biomarkers that capture one specific mechanism of the disease have been developed. Moreover, the increasing use of high-throughput omic approaches to analyze biological samples that include proteomics, metabolomics, and transcriptomics has emerged as a strong tool in biomarker discovery. This review will first describe recent advances in the understanding of the pathophysiology of DKD, and second, describe the current clinical biomarkers for DKD, as well as the current status of multiple potential novel biomarkers with respect to protein biomarkers, proteomics, metabolomics, and transcriptomics.

Citations

Citations to this article as recorded by  
  • Role of polyphenols in the management of diabetic complications
    Jeevika Raina, Atika Firdous, Gurvinder Singh, Rajesh Kumar, Charanjit Kaur
    Phytomedicine.2024; 122: 155155.     CrossRef
  • Single-Cell RNA Sequencing Reveals RAC1 Involvement in Macrophages Efferocytosis in Diabetic Kidney Disease
    Yi Song, Yifan Liu, Feng Guo, Lin Zhao, Guijun Qin
    Inflammation.2024; 47(2): 753.     CrossRef
  • Role of MCP-1 as an inflammatory biomarker in nephropathy
    Yanlong Liu, Ke Xu, Yuhua Xiang, Boyan Ma, Hailong Li, Yuan Li, Yue Shi, Shuju Li, Yan Bai
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Urinary podocyte stress marker as a prognostic indicator for diabetic kidney disease
    Lingfeng Zeng, Jack Kit-Chung Ng, Winston Wing-Shing Fung, Gordon Chun-Kau Chan, Kai-Ming Chow, Cheuk-Chun Szeto
    BMC Nephrology.2024;[Epub]     CrossRef
  • Identification and validation of immune and cuproptosis - related genes for diabetic nephropathy by WGCNA and machine learning
    Yubing Chen, Lijuan Liao, Baoju Wang, Zhan Wu
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Specific Alternation of Gut Microbiota and the Role of Ruminococcus gnavus in the Development of Diabetic Nephropathy
    Jinni Hong, Tingting Fu, Weizhen Liu, Yu Du, Junmin Bu, Guojian Wei, Miao Yu, Yanshan Lin, Cunyun Min, Datao Lin
    Journal of Microbiology and Biotechnology.2024; 34(3): 547.     CrossRef
  • The triglyceride-glucose index is superior to homeostasis model assessment of insulin resistance in predicting metabolic syndrome in an adult population in the United States
    Beverley Adams-Huet, Rafael Zubirán, Alan T. Remaley, Ishwarlal Jialal
    Journal of Clinical Lipidology.2024;[Epub]     CrossRef
  • Association of the dietary inflammatory index with complicated diabetic kidney disease in people with diabetes mellitus: evidence from NHANES 2009–2018
    Yixin Rui, Xiumeng Zhang, Hongxiao Xie, Hu Qi, Rong Liu, Nan Zeng
    Acta Diabetologica.2024;[Epub]     CrossRef
  • A Narrative Review of New Treatment Options for Diabetic Nephropathy
    Aadhira Pillai, Darshna Fulmali
    Cureus.2023;[Epub]     CrossRef
  • Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology
    Yaqian Cheng, Siqi Wan, Linna Yao, Ding Lin, Tong Wu, Yongjian Chen, Ailian Zhang, Chenfei Lu
    Journal of Ethnopharmacology.2023; 306: 116166.     CrossRef
  • Molecular Pathways of Diabetic Kidney Disease Inferred from Proteomics
    Lan Wei, Yuanyuan Han, Chao Tu
    Diabetes, Metabolic Syndrome and Obesity.2023; Volume 16: 117.     CrossRef
  • Omics and Artificial Intelligence in Kidney Diseases
    Nadja Grobe, Josef Scheiber, Hanjie Zhang, Christian Garbe, Xiaoling Wang
    Advances in Kidney Disease and Health.2023; 30(1): 47.     CrossRef
  • Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective
    Soumik Das, Ramanathan Gnanasambandan
    Life Sciences.2023; 316: 121414.     CrossRef
  • Pediatric Diabetic Nephropathy: Novel Insights from microRNAs
    Francesca Lanzaro, Annalisa Barlabà, Angelica De Nigris, Federica Di Domenico, Valentina Verde, Emanuele Miraglia del Giudice, Anna Di Sessa
    Journal of Clinical Medicine.2023; 12(4): 1447.     CrossRef
  • Novel Biomarkers of Diabetic Kidney Disease
    Jorge Rico-Fontalvo, Gustavo Aroca-Martínez, Rodrigo Daza-Arnedo, José Cabrales, Tomás Rodríguez-Yanez, María Cardona-Blanco, Juan Montejo-Hernández, Dairo Rodelo Barrios, Jhonny Patiño-Patiño, Elber Osorio Rodríguez
    Biomolecules.2023; 13(4): 633.     CrossRef
  • Diabetic vascular diseases: molecular mechanisms and therapeutic strategies
    Yiwen Li, Yanfei Liu, Shiwei Liu, Mengqi Gao, Wenting Wang, Keji Chen, Luqi Huang, Yue Liu
    Signal Transduction and Targeted Therapy.2023;[Epub]     CrossRef
  • Metabolic phenotypes and risk of end-stage kidney disease in patients with type 2 diabetes
    Lijun Zhao, Yutong Zou, Yucheng Wu, Linli Cai, Yuancheng Zhao, Yiting Wang, Xiang Xiao, Qing Yang, Jia Yang, Honghong Ren, Nanwei Tong, Fang Liu
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Identification of a New RNA and Protein Integrated Biomarker Panel Associated with Kidney Function Impairment in DKD: Translational Implications
    Alessandra Scamporrino, Stefania Di Mauro, Agnese Filippello, Grazia Di Marco, Antonino Di Pino, Roberto Scicali, Maurizio Di Marco, Emanuele Martorana, Roberta Malaguarnera, Francesco Purrello, Salvatore Piro
    International Journal of Molecular Sciences.2023; 24(11): 9412.     CrossRef
  • Increased serum PCSK9 levels are associated with renal function impairment in patients with type 2 diabetes mellitus
    Zhicai Feng, Xiangyu Liao, Hao Zhang, Juan Peng, Zhijun Huang, Bin Yi
    Renal Failure.2023;[Epub]     CrossRef
  • Analysis of Serum Pyrodeath Re-lated Proteins and Renal Injury in Patients with Type 2 DKD
    茹洁 马
    Asian Case Reports in Emergency Medicine.2023; 11(02): 53.     CrossRef
  • Loganin reduces diabetic kidney injury by inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis
    Xiangri Kong, Yunyun Zhao, Xingye Wang, Yongjiang Yu, Ying Meng, Guanchi Yan, Miao Yu, Lihong Jiang, Wu Song, Bingmei Wang, Xiuge Wang
    Chemico-Biological Interactions.2023; 382: 110640.     CrossRef
  • Machine-learning algorithm-based prediction of a diagnostic model based on oxidative stress-related genes involved in immune infiltration in diabetic nephropathy patients
    Heng-Mei Zhu, Na Liu, Dong-Xuan Sun, Liang Luo
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • The roles of gut microbiota and its metabolites in diabetic nephropathy
    Hui Zhao, Cheng-E Yang, Tian Liu, Ming-Xia Zhang, Yan Niu, Ming Wang, Jun Yu
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • High triglyceride levels increase the risk of diabetic microvascular complications: a cross-sectional study
    Jiahang Li, Lei Shi, Guohong Zhao, Fei Sun, Zhenxing Nie, Zhongli Ge, Bin Gao, Yan Yang
    Lipids in Health and Disease.2023;[Epub]     CrossRef
  • Correlation of Kidney Injury Molecule-1 and Nephrin Levels in Iraqi Patients with Diabetic Nephropathy
    Raghda Hisham Aljorani, Eman Saadi Saleh , Khalaf Gata Hussein Al Mohammadawi
    Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ).2023; 5: 99.     CrossRef
  • Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies
    Marina Darenskaya, Sergey Kolesnikov, Natalya Semenova, Lyubov Kolesnikova
    International Journal of Molecular Sciences.2023; 24(15): 12378.     CrossRef
  • Evaluation of Neutrophil/Lymphocyte Ratio, Low-Density Lipoprotein/Albumin Ratio, and Red Cell Distribution Width/Albumin Ratio in the Estimation of Proteinuria in Uncontrolled Diabetic Patients
    Duygu Tutan, Murat Doğan
    Cureus.2023;[Epub]     CrossRef
  • Hedysarum polybotrys polysaccharide attenuates renal inflammatory infiltration and fibrosis in diabetic mice by inhibiting the HMGB1/RAGE/TLR4 pathway
    Changqing Xu, Yanxu Cheng, Zongmei Liu, Xiaoyan Fu
    Experimental and Therapeutic Medicine.2023;[Epub]     CrossRef
  • Abdominal adipose tissue and type 2 diabetic kidney disease: adipose radiology assessment, impact, and mechanisms
    Fei Lu, Jinlei Fan, Fangxuan Li, Lijing Liu, Zhiyu Chen, Ziyu Tian, Liping Zuo, Dexin Yu
    Abdominal Radiology.2023; 49(2): 560.     CrossRef
  • Inhibition of MD2 by natural product-drived JM-9 attenuates renal inflammation and diabetic nephropathy in mice
    Minxiu Wang, Qianhui Zhang, Shuaijie Lou, Leiming Jin, Gaojun Wu, Wenqi Wu, Qidong Tang, Yi Wang, Xiaohong Long, Ping Huang, Wu Luo, Guang Liang
    Biomedicine & Pharmacotherapy.2023; 168: 115660.     CrossRef
  • Multifaceted relationship between diabetes and kidney diseases: Beyond diabetes
    Pasquale Esposito, Daniela Picciotto, Francesca Cappadona, Francesca Costigliolo, Elisa Russo, Lucia Macciò, Francesca Viazzi
    World Journal of Diabetes.2023; 14(10): 1450.     CrossRef
  • Mitochondrial antiviral signaling protein: a potential therapeutic target in renal disease
    Meng Wu, Zhiyin Pei, Guangfeng Long, Hongbing Chen, Zhanjun Jia, Weiwei Xia
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • Research progress on multiple cell death pathways of podocytes in diabetic kidney disease
    Can Yang, Zhen Zhang, Jieting Liu, Peijian Chen, Jialing Li, Haiying Shu, Yanhui Chu, Luxin Li
    Molecular Medicine.2023;[Epub]     CrossRef
  • Quantitative profiling of carboxylic compounds by gas chromatography-mass spectrometry for revealing biomarkers of diabetic kidney disease
    Rongrong Zhu, Yan Yuan, Rourou Qi, Jianying Liang, Yan Shi, Hongbo Weng
    Journal of Chromatography B.2023; 1231: 123930.     CrossRef
  • Jiangtang Decoction Ameliorates Diabetic Kidney Disease Through the Modulation of the Gut Microbiota
    Jinni Hong, Tingting Fu, Weizhen Liu, Yu Du, Junmin Bu, Guojian Wei, Miao Yu, Yanshan Lin, Cunyun Min, Datao Lin
    Diabetes, Metabolic Syndrome and Obesity.2023; Volume 16: 3707.     CrossRef
  • GLP-1RA Combined with SGLT2 Inhibitors for the Treatment of Diabetic Kidney Disease: A Meta Analysis
    莹 郭
    Advances in Clinical Medicine.2023; 13(11): 18117.     CrossRef
  • Potential application of Klotho as a prognostic biomarker for patients with diabetic kidney disease: a meta-analysis of clinical studies
    Li Xia Yu, Min Yue Sha, Yue Chen, Fang Tan, Xi Liu, Shasha Li, Qi-Feng Liu
    Therapeutic Advances in Chronic Disease.2023;[Epub]     CrossRef
  • Research progress of natural active compounds on improving podocyte function to reduce proteinuria in diabetic kidney disease
    Le Gong, Rui Wang, Xinyu Wang, Jing Liu, Zhaodi Han, Qian Li, Yi Jin, Hui Liao
    Renal Failure.2023;[Epub]     CrossRef
  • Identification of potential crosstalk genes and mechanisms between periodontitis and diabetic nephropathy through bioinformatic analysis
    Huijuan Lu, Jia Sun, Jieqiong Sun
    Medicine.2023; 102(52): e36802.     CrossRef
  • Mitochondrial RNAs as Potential Biomarkers of Functional Impairment in Diabetic Kidney Disease
    Stefania Di Mauro, Alessandra Scamporrino, Agnese Filippello, Maurizio Di Marco, Maria Teresa Di Martino, Francesca Scionti, Antonino Di Pino, Roberto Scicali, Roberta Malaguarnera, Francesco Purrello, Salvatore Piro
    International Journal of Molecular Sciences.2022; 23(15): 8198.     CrossRef
  • Renoprotective Mechanism of Sodium-Glucose Cotransporter 2 Inhibitors: Focusing on Renal Hemodynamics
    Nam Hoon Kim, Nan Hee Kim
    Diabetes & Metabolism Journal.2022; 46(4): 543.     CrossRef
  • Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression
    Yasmin M. Ahmed, Raha Orfali, Nada S. Abdelwahab, Hossam M. Hassan, Mostafa E. Rateb, Asmaa M. AboulMagd
    Pharmaceuticals.2022; 15(10): 1175.     CrossRef
  • Polydatin attenuates tubulointerstitial fibrosis in diabetic kidney disease by inhibiting YAP expression and nuclear translocation
    Manlin He, Lan Feng, Yang Chen, Bin Gao, Yiwei Du, Lu Zhou, Fei Li, Hongbao Liu
    Frontiers in Physiology.2022;[Epub]     CrossRef
  • Prevalence of diabetic nephropathy in the diabetes mellitus population: A protocol for systematic review and meta-analysis
    Sicheng Li, Huidi Xie, Yang Shi, Hongfang Liu
    Medicine.2022; 101(42): e31232.     CrossRef
  • Stratification of diabetic kidney diseases via data-independent acquisition proteomics–based analysis of human kidney tissue specimens
    Qinghua Huang, Xianming Fei, Zhaoxian Zhong, Jieru Zhou, Jianguang Gong, Yuan Chen, Yiwen Li, Xiaohong Wu
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Novel biomarkers and therapeutic approaches for diabetic retinopathy and nephropathy: Recent progress and future perspectives
    Ziyan Xie, Xinhua Xiao
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Diabetic Kidney Disease
    Susanne B. Nicholas, Amy K. Mottl
    Nephrology Self-Assessment Program.2022; 21(5): 394.     CrossRef
Short Communication
Basic Research
Article image
GPR40 Agonism Modulates Inflammatory Reactions in Vascular Endothelial Cells
Joo Won Kim, Eun Roh, Kyung Mook Choi, Hye Jin Yoo, Hwan-Jin Hwang, Sei Hyun Baik
Diabetes Metab J. 2022;46(3):506-511.   Published online January 24, 2022
DOI: https://doi.org/10.4093/dmj.2021.0092
  • 5,190 View
  • 232 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract PDFPubReader   ePub   
Endothelial dysfunction is strongly linked with inflammatory responses, which can impact cardiovascular disease. Recently, G protein-coupled receptor 40 (GPR40) has been investigated as a modulator of metabolic stress; however, the function of GPR40 in vascular endothelial cells has not been reported. We analyzed whether treatment of GPR40-specific agonists modulated the inflammatory responses in human umbilical vein endothelial cells (HUVECs). Treatment with LY2922470, a GPR40 agonist, significantly reduced lipopolysaccharide (LPS)-mediated nuclear factor-kappa B (NF-κB) phosphorylation and movement into the nucleus from the cytosol. However, treatment with another GPR40 agonist, TAK875, did not inhibit LPS-induced NF-κB activation. LPS treatment induced expression of adhesion molecules vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and attachment of THP-1 cells to HUVECs, which were all decreased by LY2922470 but not TAK875. Our results showed that ligand-dependent agonism of GPR40 is a promising therapeutic target for overcoming inflammatory reactions in the endothelium.

Citations

Citations to this article as recorded by  
  • Synthetic GPR40/FFAR1 agonists: An exhaustive survey on the most recent chemical classes and their structure-activity relationships
    Abhik Paul, Sourin Nahar, Pankaj Nahata, Arnab Sarkar, Avik Maji, Ajeya Samanta, Sanmoy Karmakar, Tapan Kumar Maity
    European Journal of Medicinal Chemistry.2024; 264: 115990.     CrossRef
  • Metabolite-sensing GPCRs in rheumatoid arthritis
    Xuezhi Yang, Wankang Zhang, Luping Wang, Yingjie Zhao, Wei Wei
    Trends in Pharmacological Sciences.2024; 45(2): 118.     CrossRef
  • Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity
    Weilian Bao, Jiaren Lyu, Guize Feng, Linfeng Guo, Dian Zha, Keyuan You, Yang Liu, Haidong Li, Peng Du, Daofeng Chen, Xiaoyan Shen
    Acta Pharmaceutica Sinica B.2024;[Epub]     CrossRef
  • GPR40 deficiency worsens metabolic syndrome‐associated periodontitis in mice
    Yanchun Li, Zhongyang Lu, Cameron L. Kirkwood, Keith L. Kirkwood, Stephen A. Wank, Ai‐Jun Li, Maria F. Lopes‐Virella, Yan Huang
    Journal of Periodontal Research.2023; 58(3): 575.     CrossRef
  • Signaling pathways and intervention for therapy of type 2 diabetes mellitus
    Rong Cao, Huimin Tian, Yu Zhang, Geng Liu, Haixia Xu, Guocheng Rao, Yan Tian, Xianghui Fu
    MedComm.2023;[Epub]     CrossRef
  • G Protein-Coupled Receptor 40 Agonist LY2922470 Alleviates Ischemic-Stroke-Induced Acute Brain Injury and Functional Alterations in Mice
    Yingyu Lu, Wanlu Zhou, Qinghua Cui, Chunmei Cui
    International Journal of Molecular Sciences.2023; 24(15): 12244.     CrossRef
  • AM1638, a GPR40-Full Agonist, Inhibited Palmitate- Induced ROS Production and Endoplasmic Reticulum Stress, Enhancing HUVEC Viability in an NRF2-Dependent Manner
    Hwan-Jin Hwang, Joo Won Kim, SukHwan Yun, Min Jeong Park, Eyun Song, Sooyeon Jang, Ahreum Jang, Kyung Mook Choi, Sei Hyun Baik, Hye Jin Yoo
    Endocrinology and Metabolism.2023; 38(6): 760.     CrossRef
  • Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders
    Hong-Ping Guan, Yusheng Xiong
    Frontiers in Pharmacology.2022;[Epub]     CrossRef
Review
Metabolic Risk/Epidemiology
Article image
Computed Tomography-Derived Myosteatosis and Metabolic Disorders
Iva Miljkovic, Chantal A. Vella, Matthew Allison
Diabetes Metab J. 2021;45(4):482-491.   Published online July 30, 2021
DOI: https://doi.org/10.4093/dmj.2020.0277
  • 6,589 View
  • 243 Download
  • 44 Web of Science
  • 45 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFPubReader   ePub   
The role of ectopic adipose tissue infiltration into skeletal muscle (i.e., myosteatosis) for metabolic disorders has received considerable and increasing attention in the last 10 years. The purpose of this review was to evaluate and summarize existing studies focusing on computed tomography (CT)-derived measures of myosteatosis and metabolic disorders. There is consistent evidence that CT-derived myosteatosis contributes to dysglycemia, insulin resistance, type 2 diabetes mellitus, and inflammation, and, to some extent, dyslipidemia, independent of general obesity, visceral fat, and other relevant risk factors, suggesting that it may serve as a tool for metabolic risk prediction. Identification of which muscles should be examined, and the standardized CT protocols to be employed, are necessary to enhance the applicability of findings from epidemiologic studies of myosteatosis. Additional and longer longitudinal studies are necessary to confirm a role of myosteatosis in the development of type 2 diabetes mellitus, and examine these associations in a variety of muscles across multiple race/ethnic populations. Given the emerging role of myosteatosis in metabolic health, well-designed intervention studies are needed to investigate relevant lifestyle and pharmaceutical approaches.

Citations

Citations to this article as recorded by  
  • Association of Muscle Fat Content and Muscle Mass With Impaired Lung Function in Young Adults With Obesity: Evaluation With MRI
    Xin Yu, Yan-Hao Huang, You-Zhen Feng, Zhong-Yuan Cheng, Cun-Chuan Wang, Xiang-Ran Cai
    Academic Radiology.2024; 31(1): 9.     CrossRef
  • Skeletal muscle alterations indicate poor prognosis in cirrhotic patients: a multicenter cohort study in China
    Xin Zeng, Zhi-Wen Shi, Jia-Jun Yu, Li-Fen Wang, Chun-Yan Sun, Yuan-Yuan Luo, Pei-Mei Shi, Yong Lin, Yue-Xiang Chen, Jia Guo, Chun-Qing Zhang, Wei-Fen Xie
    Hepatology International.2024; 18(2): 673.     CrossRef
  • Subtype-specific Body Composition and Metabolic Risk in Patients With Primary Aldosteronism
    Seung Shin Park, Chang Ho Ahn, Sang Wan Kim, Ji Won Yoon, Jung Hee Kim
    The Journal of Clinical Endocrinology & Metabolism.2024; 109(2): e788.     CrossRef
  • Myosteatosis as a novel predictor of new‐onset diabetes mellitus after kidney transplantation
    Takahito Wakamiya, Takuya Fujimoto, Takahito Endo, Shun Nishioka, Naoki Yokoyama, Shimpei Yamashita, Kazuro Kikkawa, Yoji Hyodo, Takeshi Ishimura, Yasuo Kohjimoto, Isao Hara, Masato Fujisawa
    International Journal of Urology.2024; 31(1): 39.     CrossRef
  • Predictors of visceral and subcutaneous adipose tissue and muscle density: The ShapeUp! Kids study
    Gertraud Maskarinec, Yurii Shvetsov, Michael C. Wong, Devon Cataldi, Jonathan Bennett, Andrea K. Garber, Steven D. Buchthal, Steven B. Heymsfield, John A. Shepherd
    Nutrition, Metabolism and Cardiovascular Diseases.2024; 34(3): 799.     CrossRef
  • Association of daily carbohydrate intake with intermuscular adipose tissue in Korean individuals with obesity: a cross-sectional study
    Ha-Neul Choi, Young-Seol Kim, Jung-Eun Yim
    Nutrition Research and Practice.2024; 18(1): 78.     CrossRef
  • Myosteatosis is associated with poor survival after kidney transplantation: a large retrospective cohort validation
    Jie Chen, Yue Li, Chengjie Li, Turun Song
    Abdominal Radiology.2024; 49(4): 1210.     CrossRef
  • Regenerative rehabilitation measures to restore tissue function after arsenic exposure
    Adam A. Jasper, Kush H. Shah, Helmet Karim, Swathi Gujral, Iva Miljkovic, Caterina Rosano, Aaron Barchowsky, Amrita Sahu
    Current Opinion in Biomedical Engineering.2024; 30: 100529.     CrossRef
  • Impact of CFTR modulator therapy on body composition as assessed by thoracic computed tomography: A follow-up study
    Víctor Navas-Moreno, Fernando Sebastian-Valles, Víctor Rodríguez-Laval, Carolina Knott-Torcal, Mónica Marazuela, Nuria Sánchez de la Blanca, Jose Alfonso Arranz Martín, Rosa María Girón, Miguel Antonio Sampedro-Núñez
    Nutrition.2024; 123: 112425.     CrossRef
  • Myosteatosis predicts postoperative complications and long‐term survival in robotic gastrectomy for gastric cancer: A propensity score analysis
    Pingan Ding, Jiaxiang Wu, Haotian Wu, Tongkun Li, Jiaxuan Yang, Li Yang, Honghai Guo, Yuan Tian, Peigang Yang, Lingjiao Meng, Qun Zhao
    European Journal of Clinical Investigation.2024;[Epub]     CrossRef
  • A multifaceted and inclusive methodology for the detection of sarcopenia in patients undergoing bariatric surgery: an in-depth analysis of current evidence
    Eunhye Seo, Yeongkeun Kwon, Ahmad ALRomi, Mohannad Eledreesi, Sungsoo Park
    Reviews in Endocrine and Metabolic Disorders.2024;[Epub]     CrossRef
  • Muscle Steatosis and Fibrosis in Older Adults, From the AJR Special Series on Imaging of Fibrosis
    Leon Lenchik, Valentina Mazzoli, Peggy M. Cawthon, Russell T. Hepple, Robert D. Boutin
    American Journal of Roentgenology.2024;[Epub]     CrossRef
  • Body Composition at CT and Risk of Future Disease
    Michael A. Ohliger
    Radiology.2023;[Epub]     CrossRef
  • Association between hypertension and myosteatosis evaluated by abdominal computed tomography
    Han Na Jung, Yun Kyung Cho, Hwi Seung Kim, Eun Hee Kim, Min Jung Lee, Woo Je Lee, Hong-Kyu Kim, Chang Hee Jung
    Hypertension Research.2023; 46(4): 845.     CrossRef
  • Muscle fat infiltration in chronic kidney disease: a marker related to muscle quality, muscle strength and sarcopenia
    Carla Maria Avesani, Aline Miroski de Abreu, Heitor S. Ribeiro, Torkel B. Brismar, Peter Stenvinkel, Alice Sabatino, Bengt Lindholm
    Journal of Nephrology.2023; 36(3): 895.     CrossRef
  • Myosteatosis: a potential missing link between hypertension and metabolic disorder in the Asian population
    Minyoung Lee, Sungha Park
    Hypertension Research.2023; 46(6): 1603.     CrossRef
  • Interplay of skeletal muscle and adipose tissue: sarcopenic obesity
    Min Jeong Park, Kyung Mook Choi
    Metabolism.2023; 144: 155577.     CrossRef
  • Association between sarcopenic obesity and poor muscle quality based on muscle quality map and abdominal computed tomography
    Yun Kyung Cho, Han Na Jung, Eun Hee Kim, Min Jung Lee, Joong‐Yeol Park, Woo Je Lee, Hong‐Kyu Kim, Chang Hee Jung
    Obesity.2023; 31(6): 1547.     CrossRef
  • Chest CT opportunistic biomarkers for phenotyping high-risk COVID-19 patients: a retrospective multicentre study
    Anna Palmisano, Chiara Gnasso, Alberto Cereda, Davide Vignale, Riccardo Leone, Valeria Nicoletti, Simone Barbieri, Marco Toselli, Francesco Giannini, Marco Loffi, Gianluigi Patelli, Alberto Monello, Gianmarco Iannopollo, Davide Ippolito, Elisabetta Maria
    European Radiology.2023; 33(11): 7756.     CrossRef
  • Early menopause and premature ovarian insufficiency may increase the risk of sarcopenia: A systematic review and meta-analysis
    Efstathios Divaris, Panagiotis Anagnostis, Nifon K. Gkekas, Evangelia Kouidi, Dimitrios G. Goulis
    Maturitas.2023; 175: 107782.     CrossRef
  • The Important Role of Intermuscular Adipose Tissue on Metabolic Changes Interconnecting Obesity, Ageing and Exercise: A Systematic Review
    I Gusti Putu Suka Aryana, Ivana Beatrice Paulus, Sanjay Kalra, Dian Daniella, Raden Ayu Tuty Kuswardhani, Ketut Suastika, Sony Wibisono
    European Endocrinology.2023; 19(1): 54.     CrossRef
  • Increase in skeletal muscular adiposity and cognitive decline in a biracial cohort of older men and women
    Caterina Rosano, Anne Newman, Adam Santanasto, Xiaonan Zhu, Bret Goodpaster, Iva Miljkovic
    Journal of the American Geriatrics Society.2023; 71(9): 2759.     CrossRef
  • Myosteatosis and bone marrow adiposity are not associated among postmenopausal women with fragility fractures
    Sammy Badr, Héloïse Dapvril, Daniela Lombardo, Huda Khizindar, Claire Martin, Bernard Cortet, Anne Cotten, Julien Paccou
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Relationship between trunk intramuscular adipose tissue content and prevalence of metabolic syndrome in middle-aged Japanese men
    Noriko I. Tanaka, Masataka Suwa, Hisashi Maeda, Aya Tomita, Takayuki Imoto, Hiroshi Akima
    Nutrition.2023; 113: 112083.     CrossRef
  • Sarcopenic obesity and its relation with muscle quality and mortality in patients on chronic hemodialysis
    Alice Sabatino, Carla Maria Avesani, Giuseppe Regolisti, Marianna Adinolfi, Giuseppe Benigno, Marco Delsante, Enrico Fiaccadori, Ilaria Gandolfini
    Clinical Nutrition.2023; 42(8): 1359.     CrossRef
  • Skeletal muscle adiposity is a novel risk factor for poor cognition in African Caribbean women
    Adrianna I. Acevedo‐Fontánez, Ryan K. Cvejkus, Joseph M. Zmuda, Allison L. Kuipers, Emma Barinas‐Mitchell, Akira Sekikawa, Victor Wheeler, Caterina Rosano, Iva Miljkovic
    Obesity.2023; 31(9): 2398.     CrossRef
  • Obesity, Sarcopenia and Myosteatosis: Impact on Clinical Outcomes in the Operative Management of Crohn’s Disease
    Mark Donnelly, Dorothee Driever, Éanna J Ryan, Jessie A Elliott, John Finnegan, Deirdre McNamara, Ian Murphy, Kevin C Conlon, Paul C Neary, Dara O Kavanagh, James M O’Riordan
    Inflammatory Bowel Diseases.2023;[Epub]     CrossRef
  • Meld-sarcopenia score and skeletal muscle density predicts short-term readmission of patients with hepatic encephalopathy
    Shuo Yang, Lin Zhang, Qian Jin, Jian Wang, Danli Ma, Jie Gao, Rui Huang
    European Journal of Radiology.2023; 169: 111178.     CrossRef
  • Muscle Fat Content Is Associated with Nonalcoholic Fatty Liver Disease and Liver Fibrosis in Chinese Adults
    W. Guo, X. Zhao, D. Cheng, X. Liang, M. Miao, X. Li, J. Lu, N. Xu, Shuang Hu, Qun Zhang
    The Journal of nutrition, health and aging.2023; 27(11): 960.     CrossRef
  • Association between relative muscle strength and hypertension in middle-aged and older Chinese adults
    Jin-hua Luo, Tu-ming Zhang, Lin-lin Yang, Yu-ying Cai, Yu Yang
    BMC Public Health.2023;[Epub]     CrossRef
  • Dynapenic Abdominal Obesity as a Risk Factor for Metabolic Syndrome in Individual 50 Years of Age or Older: English Longitudinal Study of Ageing
    P.C. Ramírez, R. de Oliveira Máximo, D. Capra de Oliveira, A.F. de Souza, M. Marques Luiz, M. L. Bicigo Delinocente, A. Steptoe, C. de Oliveira, Tiago da Silva Alexandre
    The Journal of nutrition, health and aging.2023; 27(12): 1188.     CrossRef
  • Editorial Comment to Myosteatosis as a novel predictor of urinary incontinence after robot‐assisted radical prostatectomy
    Nobuhiro Haga, Naotaka Gunge, Hiroshi Matsuzaki, Yu Okabe, Takeshi Miyazaki
    International Journal of Urology.2022; 29(1): 40.     CrossRef
  • Ammonia and the Muscle: An Emerging Point of View on Hepatic Encephalopathy
    Simone Di Cola, Silvia Nardelli, Lorenzo Ridola, Stefania Gioia, Oliviero Riggio, Manuela Merli
    Journal of Clinical Medicine.2022; 11(3): 611.     CrossRef
  • Single skeletal muscle fiber mechanical properties: a muscle quality biomarker of human aging
    Jae-Young Lim, Walter R. Frontera
    European Journal of Applied Physiology.2022; 122(6): 1383.     CrossRef
  • Sarcopenia in Patients with Cirrhosis after Transjugular Intrahepatic Portosystemic Shunt Placement
    Jiacheng Liu, Jinqiang Ma, Chongtu Yang, Manman Chen, Qin Shi, Chen Zhou, Songjiang Huang, Yang Chen, Yingliang Wang, Tongqiang Li, Bin Xiong
    Radiology.2022; 303(3): 711.     CrossRef
  • Myosteatosis Significantly Predicts Persistent Dyspnea and Mobility Problems in COVID-19 Survivors
    Rebecca De Lorenzo, Anna Palmisano, Antonio Esposito, Chiara Gnasso, Valeria Nicoletti, Riccardo Leone, Davide Vignale, Elisabetta Falbo, Marica Ferrante, Marta Cilla, Cristiano Magnaghi, Sabina Martinenghi, Giordano Vitali, Alessio Molfino, Patrizia Rove
    Frontiers in Nutrition.2022;[Epub]     CrossRef
  • Prognostic value of myosteatosis in patients with lung cancer: a systematic review and meta-analysis
    Shaofang Feng, Huiwen Mu, Rong Hou, Yunxin Liu, Jianjun Zou, Zheng Zhao, Yubing Zhu
    International Journal of Clinical Oncology.2022; 27(7): 1127.     CrossRef
  • Muscle Fat Content Is Strongly Associated With Hyperuricemia: A Cross-Sectional Study in Chinese Adults
    Ningxin Chen, Tingting Han, Hongxia Liu, Jie Cao, Wenwen Liu, Didi Zuo, Ting Zhang, Xiucai Lan, Xian Jin, Yurong Weng, Yaomin Hu
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Advances in muscle health and nutrition: A toolkit for healthcare professionals
    Carla M. Prado, Francesco Landi, Samuel T.H. Chew, Philip J. Atherton, Jeroen Molinger, Tobias Ruck, Maria Cristina Gonzalez
    Clinical Nutrition.2022; 41(10): 2244.     CrossRef
  • Factors related to trunk intramuscular adipose tissue content – A comparison of younger and older men
    Funa Kitagawa, Madoka Ogawa, Akito Yoshiko, Yoshiharu Oshida, Teruhiko Koike, Hiroshi Akima, Noriko I. Tanaka
    Experimental Gerontology.2022; 168: 111922.     CrossRef
  • Association of myosteatosis with various body composition abnormalities and longer length of hospitalization in patients with decompensated cirrhosis
    Xiaoyu Wang, Mingyu Sun, Yifan Li, Gaoyue Guo, Wanting Yang, Lihong Mao, Zihan Yu, Yangyang Hui, Xiaofei Fan, Binxin Cui, Kui Jiang, Chao Sun
    Frontiers in Nutrition.2022;[Epub]     CrossRef
  • Peripheral bone structure, geometry, and strength and muscle density as derived from peripheral quantitative computed tomography and mortality among rural south Indian older adults
    Guru Rajesh Jammy, Robert M. Boudreau, Iva Miljkovic, Pawan Kumar Sharma, Sudhakar Pesara Reddy, Susan L. Greenspan, Anne B. Newman, Jane A. Cauley, Bert B. Little
    PLOS Global Public Health.2022; 2(10): e0000333.     CrossRef
  • Muscle fat contents rather than muscle mass determines nonalcoholic steatohepatitis and liver fibrosis in patients with severe obesity
    Eugene Han, Mi Kyung Kim, Hye Won Lee, Seungwan Ryu, Hye Soon Kim, Byoung Kuk Jang, Youngsung Suh
    Obesity.2022; 30(12): 2440.     CrossRef
  • Sex- and region-specific associations of skeletal muscle mass with metabolic dysfunction-associated fatty liver disease
    Pei Xiao, Pu Liang, Panjun Gao, Jinyi Wu
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Imaging based body composition profiling and outcomes after oncologic liver surgery
    Lorenzo Bernardi, Raffaello Roesel, Filippo Vagelli, Pietro Majno-Hurst, Alessandra Cristaudi
    Frontiers in Oncology.2022;[Epub]     CrossRef
Original Articles
Type 1 Diabetes
Article image
Differential Profile of Plasma Circular RNAs in Type 1 Diabetes Mellitus
Yangyang Li, Ying Zhou, Minghui Zhao, Jing Zou, Yuxiao Zhu, Xuewen Yuan, Qianqi Liu, Hanqing Cai, Cong-Qiu Chu, Yu Liu
Diabetes Metab J. 2020;44(6):854-865.   Published online July 13, 2020
DOI: https://doi.org/10.4093/dmj.2019.0151
  • 6,444 View
  • 132 Download
  • 20 Web of Science
  • 20 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background

No currently available biomarkers or treatment regimens fully meet therapeutic needs of type 1 diabetes mellitus (T1DM). Circular RNA (circRNA) is a recently identified class of stable noncoding RNA that have been documented as potential biomarkers for various diseases. Our objective was to identify and analyze plasma circRNAs altered in T1DM.

Methods

We used microarray to screen differentially expressed plasma circRNAs in patients with new onset T1DM (n=3) and age-/gender-matched healthy controls (n=3). Then, we selected six candidates with highest fold-change and validated them by quantitative real-time polymerase chain reaction in independent human cohort samples (n=12). Bioinformatic tools were adopted to predict putative microRNAs (miRNAs) sponged by these validated circRNAs and their downstream messenger RNAs (mRNAs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to gain further insights into T1DM pathogenesis.

Results

We identified 68 differentially expressed circRNAs, with 61 and seven being up- and downregulated respectively. Four of the six selected candidates were successfully validated. Curations of their predicted interacting miRNAs revealed critical roles in inflammation and pathogenesis of autoimmune disorders. Functional relations were visualized by a circRNA-miRNA-mRNA network. GO and KEGG analyses identified multiple inflammation-related processes that could be potentially associated with T1DM pathogenesis, including cytokine-cytokine receptor interaction, inflammatory mediator regulation of transient receptor potential channels and leukocyte activation involved in immune response.

Conclusion

Our study report, for the first time, a profile of differentially expressed plasma circRNAs in new onset T1DM. Further in silico annotations and bioinformatics analyses supported future application of circRNAs as novel biomarkers of T1DM.

Citations

Citations to this article as recorded by  
  • Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review
    Yuhong Zhong, Juan Xia, Li Liao, Mohammad Reza Momeni
    International Journal of Biological Macromolecules.2024; 259: 128182.     CrossRef
  • Circular RNAs: Potential biomarkers and therapeutic targets for autoimmune diseases
    Ren-Jie Zhao, Wan-Ying Zhang, Xing-Xing Fan
    Heliyon.2024; 10(1): e23694.     CrossRef
  • Hsa_circRNA_405498 and hsa_circRNA_100033 Serve as Potential Biomarkers for Differential Diagnosis of Type 1 Diabetes
    Ziwei Zhang, Shuoming Luo, Zilin Xiao, Wenfeng Yin, Xiajie Shi, Hongzhi Chen, Zhiguo Xie, Zhenqi Liu, Xia Li, Zhiguang Zhou
    The Journal of Clinical Endocrinology & Metabolism.2024; 109(6): 1464.     CrossRef
  • A Comprehensive Review on Circulating cfRNA in Plasma: Implications for Disease Diagnosis and Beyond
    Pengqiang Zhong, Lu Bai, Mengzhi Hong, Juan Ouyang, Ruizhi Wang, Xiaoli Zhang, Peisong Chen
    Diagnostics.2024; 14(10): 1045.     CrossRef
  • Research progress of circular RNA molecules in aging and age-related diseases
    Zhidan Zhang, Yuling Huang, AYao Guo, Lina Yang
    Ageing Research Reviews.2023; 87: 101913.     CrossRef
  • CircRNAs and RNA-Binding Proteins Involved in the Pathogenesis of Cancers or Central Nervous System Disorders
    Yuka Ikeda, Sae Morikawa, Moeka Nakashima, Sayuri Yoshikawa, Kurumi Taniguchi, Haruka Sawamura, Naoko Suga, Ai Tsuji, Satoru Matsuda
    Non-Coding RNA.2023; 9(2): 23.     CrossRef
  • Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications
    Zi Li, Yuanyuan Ren, Ziwei Lv, Man Li, Yujia Li, Xiaobin Fan, Yuyan Xiong, Lu Qian
    Biomedicine & Pharmacotherapy.2023; 168: 115744.     CrossRef
  • Circular RNA PIP5K1A Promotes Glucose and Lipid Metabolism Disorders and Inflammation in Type 2 Diabetes Mellitus
    Ge Song, YiQian Zhang, YiHua Jiang, Huan Zhang, Wen Gu, Xiu Xu, Jing Yao, ZhengFang Chen
    Molecular Biotechnology.2023;[Epub]     CrossRef
  • Circular RNA PIP5K1A act as microRNA-552-3p sponge to regulates inflammation, oxidative damage in glucolipotoxicity-induced pancreatic INS-1 β-cells via Janus kinase 1
    Lei Ren
    Bioengineered.2022; 13(3): 5724.     CrossRef
  • Circular RNAs in diabetes mellitus and its complications
    Wenqi Fan, Haipeng Pang, Zhiguo Xie, Gan Huang, Zhiguang Zhou
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Type 1 Diabetes Mellitus-Related circRNAs Regulate CD4+ T Cell Functions
    Jianni Chen, Guanfei Jia, Xue Lv, Shufa Li, Christos K. Kontos
    BioMed Research International.2022; 2022: 1.     CrossRef
  • An intriguing role of circular RNA in insulin resistance and endothelial dysfunction: the future perspectives
    Monisha Prasad, Selvaraj Jayaraman, Vishnu Priya Veeraraghavan
    Hypertension Research.2022; 45(11): 1843.     CrossRef
  • Circular RNAs in Diabetic Nephropathy: Updates and Perspectives
    Miao Liu, Junli Zhao
    Aging and disease.2022; 13(5): 1365.     CrossRef
  • CircRNAs: Key molecules in the prevention and treatment of ischemic stroke
    Zeyu Liu, Yanhong Zhou, Jian Xia
    Biomedicine & Pharmacotherapy.2022; 156: 113845.     CrossRef
  • Pro-Inflammatory Cytokines Promote the Transcription of Circular RNAs in Human Pancreatic β Cells
    Simranjeet Kaur, Caroline Frørup, Aashiq H. Mirza, Tina Fløyel, Reza Yarani, Maikel L. Colli, Jesper Johannesen, Joachim Størling, Decio L. Eizirik, Flemming Pociot
    Non-Coding RNA.2022; 8(5): 69.     CrossRef
  • Differential Expression and Bioinformatics Analysis of Plasma-Derived Exosomal circRNA in Type 1 Diabetes Mellitus
    Haipeng Pang, Wenqi Fan, Xiajie Shi, Shuoming Luo, Yimeng Wang, Jian Lin, Yang Xiao, Xia Li, Gan Huang, Zhiguo Xie, Zhiguang Zhou, Jinhui Liu
    Journal of Immunology Research.2022; 2022: 1.     CrossRef
  • Circular RNAs in diabetes and its complications: Current knowledge and future prospects
    Wenfeng Yin, Ziwei Zhang, Zilin Xiao, Xia Li, Shuoming Luo, Zhiguang Zhou
    Frontiers in Genetics.2022;[Epub]     CrossRef
  • Circular RNA in autoimmune diseases: special emphasis on regulation mechanism in RA and SLE
    Yurong Huang, Qiuyun Xue, Chenglong Cheng, Yuting Wang, Xiao Wang, Jun Chang, Chenggui Miao
    Journal of Pharmacy and Pharmacology.2022;[Epub]     CrossRef
  • Emerging roles of circular RNAs in systemic lupus erythematosus
    Xin Wang, Rui Ma, Weimin Shi, Zhouwei Wu, Yuling Shi
    Molecular Therapy - Nucleic Acids.2021; 24: 212.     CrossRef
  • Understanding Competitive Endogenous RNA Network Mechanism in Type 1 Diabetes Mellitus Using Computational and Bioinformatics Approaches
    Xuanzi Yi, Xu Cheng
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2021; Volume 14: 3865.     CrossRef
Complications
Article image
Therapeutic Effects of Fibroblast Growth Factor-21 on Diabetic Nephropathy and the Possible Mechanism in Type 1 Diabetes Mellitus Mice
Wenya Weng, Tingwen Ge, Yi Wang, Lulu He, Tinghao Liu, Wanning Wang, Zongyu Zheng, Lechu Yu, Chi Zhang, Xuemian Lu
Diabetes Metab J. 2020;44(4):566-580.   Published online May 15, 2020
DOI: https://doi.org/10.4093/dmj.2019.0089
  • 6,295 View
  • 102 Download
  • 12 Web of Science
  • 11 Crossref
AbstractAbstract PDFPubReader   ePub   
Background

Fibroblast growth factor 21 (FGF21) has been only reported to prevent type 1 diabetic nephropathy (DN) in the streptozotocin-induced type 1 diabetes mellitus (T1DM) mouse model. However, the FVB (Cg)-Tg (Cryaa-Tag, Ins2-CALM1) 26OVE/PneJ (OVE26) transgenic mouse is a widely recommended mouse model to recapture the most important features of T1DM nephropathy that often occurs in diabetic patients. In addition, most previous studies focused on exploring the preventive effect of FGF21 on the development of DN. However, in clinic, development of therapeutic strategy has much more realistic value compared with preventive strategy since the onset time of DN is difficult to be accurately predicted. Therefore, in the present study OVE26 mice were used to investigate the potential therapeutic effects of FGF21 on DN.

Methods

Four-month-old female OVE26 mice were intraperitoneally treated with recombinant FGF21 at a dose of 100 µg/kg/day for 3 months. The diabetic and non-diabetic control mice were treated with phosphate-buffered saline at the same volume. Renal functions, pathological changes, inflammation, apoptosis, oxidative stress and fibrosis were examined in mice of all groups.

Results

The results showed that severe renal dysfunction, morphological changes, inflammation, apoptosis, and fibrosis were observed in OVE26 mice. However, all the renal abnormalities above in OVE26 mice were significantly attenuated by 3-month FGF21 treatment associated with improvement of renal adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) activity and sirtuin 1 (SIRT1) expression.

Conclusion

Therefore, this study demonstrated that FGF21 might exert therapeutic effects on DN through AMPK-SIRT1 pathway.

Citations

Citations to this article as recorded by  
  • Fibroblast growth factor 21 alleviates unilateral ureteral obstruction-induced renal fibrosis by inhibiting Wnt/β-catenin signaling pathway
    Wenhui Zhong, Yuheng Jiang, Huizhen Wang, Xiang Luo, Tao Zeng, Huimi Huang, Ling Xiao, Nan Jia, Aiqing Li
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.2024; 1871(2): 119620.     CrossRef
  • Urinary Excretion of Biomolecules Related to Cell Cycle, Proliferation, and Autophagy in Subjects with Type 2 Diabetes and Chronic Kidney Disease
    Anton I. Korbut, Vyacheslav V. Romanov, Vadim V. Klimontov
    Biomedicines.2024; 12(3): 487.     CrossRef
  • New developments in the biology of fibroblast growth factors
    David M. Ornitz, Nobuyuki Itoh
    WIREs Mechanisms of Disease.2022;[Epub]     CrossRef
  • SIRT1–SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms
    Wenxiu Qi, Cheng Hu, Daqing Zhao, Xiangyan Li
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Research Progress of Fibroblast Growth Factor 21 in Fibrotic Diseases
    Min-Qi Jia, Cha-Xiang Guan, Jia-Hao Tao, Yong Zhou, Liang-Jun Yan
    Oxidative Medicine and Cellular Longevity.2022; 2022: 1.     CrossRef
  • Metabolic-associated fatty liver disease increases the risk of end-stage renal disease in patients with biopsy-confirmed diabetic nephropathy: a propensity-matched cohort study
    Yutong Zou, Lijun Zhao, Junlin Zhang, Yiting Wang, Yucheng Wu, Honghong Ren, Tingli Wang, Yuancheng Zhao, Huan Xu, Lin Li, Nanwei Tong, Fang Liu
    Acta Diabetologica.2022; 60(2): 225.     CrossRef
  • FGF21 and Chronic Kidney Disease
    João Victor Salgado, Miguel Angelo Goes, Natalino Salgado Filho
    Metabolism.2021; 118: 154738.     CrossRef
  • The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy
    Junyu Deng, Ye Liu, Yiqiu Liu, Wei Li, Xuqiang Nie
    Journal of Inflammation Research.2021; Volume 14: 5273.     CrossRef
  • Therapeutic effect and mechanism of combined use of FGF21 and insulin on diabetic nephropathy
    Fanrui Meng, Yukai Cao, Mir Hassan Khoso, Kai Kang, Guiping Ren, Wei Xiao, Deshan Li
    Archives of Biochemistry and Biophysics.2021; 713: 109063.     CrossRef
  • FGF19 and FGF21 for the Treatment of NASH—Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human
    Emma Henriksson, Birgitte Andersen
    Frontiers in Endocrinology.2020;[Epub]     CrossRef
  • FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases
    Erik J. Tillman, Tim Rolph
    Frontiers in Endocrinology.2020;[Epub]     CrossRef
Review
Basic Research
The Role of CD36 in Type 2 Diabetes Mellitus: β-Cell Dysfunction and Beyond
Jun Sung Moon, Udayakumar Karunakaran, Elumalai Suma, Seung Min Chung, Kyu Chang Won
Diabetes Metab J. 2020;44(2):222-233.   Published online April 23, 2020
DOI: https://doi.org/10.4093/dmj.2020.0053
  • 7,809 View
  • 171 Download
  • 18 Web of Science
  • 16 Crossref
AbstractAbstract PDFPubReader   

Impaired β-cell function is the key pathophysiology of type 2 diabetes mellitus, and chronic exposure of nutrient excess could lead to this tragedy. For preserving β-cell function, it is essential to understand the cause and mechanisms about the progression of β-cells failure. Glucotoxicity, lipotoxicity, and glucolipotoxicity have been suggested to be a major cause of β-cell dysfunction for decades, but not yet fully understood. Fatty acid translocase cluster determinant 36 (CD36), which is part of the free fatty acid (FFA) transporter system, has been identified in several tissues such as muscle, liver, and insulin-producing cells. Several studies have reported that induction of CD36 increases uptake of FFA in several cells, suggesting the functional interplay between glucose and FFA in terms of insulin secretion and oxidative metabolism. However, we do not currently know the regulating mechanism and physiological role of CD36 on glucolipotoxicity in pancreatic β-cells. Also, the downstream and upstream targets of CD36 related signaling have not been defined. In the present review, we will focus on the expression and function of CD36 related signaling in the pancreatic β-cells in response to hyperglycemia and hyperlipidemia (ceramide) along with the clinical studies on the association between CD36 and metabolic disorders.

Citations

Citations to this article as recorded by  
  • Nrf2 inhibition regulates intracellular lipid accumulation in mouse insulinoma cells and improves insulin secretory function
    Alpana Mukhuty, Samanwita Mandal, Chandrani Fouzder, Snehasis Das, Dipanjan Chattopadhyay, Tanmay Majumdar, Rakesh Kundu
    Molecular and Cellular Endocrinology.2024; 581: 112112.     CrossRef
  • CD36 gene variant rs1761667(G/A) as a biomarker in obese type 2 diabetes mellitus cases
    Ashwin Kumar Shukla, Amreen Shamsad, Atar Singh Kushwah, Shalini Singh, Kauser Usman, Monisha Banerjee
    Egyptian Journal of Medical Human Genetics.2024;[Epub]     CrossRef
  • CD36 regulates macrophage and endothelial cell activation and multinucleate giant cell formation in anti neutrophil cytoplasm antibody vasculitis
    Xiang Zhang, Catherine King, Alexander Dowell, Paul Moss, Lorraine Harper, Dimitrios Chanouzas, Xiong-zhong Ruan, Alan David Salama
    Clinical Immunology.2024; 260: 109914.     CrossRef
  • Identification and validation of oxidative stress-related genes in sepsis-induced myopathy
    Ning Zhang, Dan Huang, Xiang Li, JinXia Yan, Qi Yan, WeiXing Ge, Jun Zhou
    Medicine.2024; 103(18): e37933.     CrossRef
  • The association of soluble cluster of differentiation 36 with metabolic diseases: A potential biomarker and therapeutic target
    Yun Li, Yaxi Chen, Xiong Z. Ruan
    Pediatric Discovery.2023;[Epub]     CrossRef
  • The role of candidate transport proteins in β‐cell long‐chain fatty acid uptake: Where are we now?
    Christina Clavelo‐Farrow, Patricia Thomas
    Diabetic Medicine.2023;[Epub]     CrossRef
  • SARS-CoV-2 in the pancreas and the impaired islet function in COVID-19 patients
    Ningfei Ji, Mingshun Zhang, Liang Ren, Yunyun Wang, Bicheng Hu, Jie Xiang, Yingyun Gong, Chaojie Wu, Guoqiang Qu, Wenqiu Ding, Zhiqiang Yin, Shan Li, Zhengxia Wang, Lianzheng Zhou, Xueqin Chen, Yuan Ma, Jinhai Tang, Yun Liu, Liang Liu, Mao Huang
    Emerging Microbes & Infections.2022; 11(1): 1115.     CrossRef
  • Is imaging-based muscle quantity associated with risk of diabetes? A meta-analysis of cohort studies
    Shanhu Qiu, Xue Cai, Yang Yuan, Bo Xie, Zilin Sun, Tongzhi Wu
    Diabetes Research and Clinical Practice.2022; 189: 109939.     CrossRef
  • Lipotoxicity in a Vicious Cycle of Pancreatic Beta Cell Exhaustion
    Vladimir Grubelnik, Jan Zmazek, Matej Završnik, Marko Marhl
    Biomedicines.2022; 10(7): 1627.     CrossRef
  • Association of cluster determinant 36, scavenger receptor class B type 1, and major facilitator superfamily domain containing the 2a genetic polymorphism with serum lipid profile in aging population with type 2 diabetes mellitus
    Xixiang Wang, Xiaojun Ma, Jingjing Xu, Yujie Guo, Shaobo Zhou, Huiyan Yu, Linhong Yuan
    Frontiers in Nutrition.2022;[Epub]     CrossRef
  • CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages
    Noorzaileen Eileena Zaidi, Nur Aima Hafiza Shazali, Thean-Chor Leow, Mohd Azuraidi Osman, Kamariah Ibrahim, Wan-Hee Cheng, Kok-Song Lai, Nik Mohd Afizan Nik Abd Rahman
    Cells.2022; 11(22): 3556.     CrossRef
  • The Past and Present Lives of the Intraocular Transmembrane Protein CD36
    Rucui Yang, Qingping Liu, Mingzhi Zhang
    Cells.2022; 12(1): 171.     CrossRef
  • Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus
    Sachin Kumar, Tapan Behl, Monika Sachdeva, Aayush Sehgal, Shilpa Kumari, Arun Kumar, Gagandeep Kaur, Harlokesh Narayan Yadav, Simona Bungau
    Life Sciences.2021; 264: 118661.     CrossRef
  • Contribution of rs3211938 polymorphism at CD36 to glucose levels, oxidized low-density lipoproteins, insulin resistance, and body mass index in Mexican mestizos with type-2 diabetes from western Mexico
    Beatriz Teresita Martín-Márquez, Flavio Sandoval-Garcia, Mónica Vazquez-Del Mercado, Erika-Aurora Martínez-García, Fernanda-Isadora Corona-Meraz, Ana-Lilia Fletes-Rayas, Soraya-Amalí Zavaleta-Muñiz
    Nutrición Hospitalaria.2021;[Epub]     CrossRef
  • Investigating the association of CD36 gene polymorphisms (rs1761667 and rs1527483) with T2DM and dyslipidemia: Statistical analysis, machine learning based prediction, and meta-analysis
    Ma’mon M. Hatmal, Walhan Alshaer, Ismail S. Mahmoud, Mohammad A. I. Al-Hatamleh, Hamzeh J. Al-Ameer, Omar Abuyaman, Malek Zihlif, Rohimah Mohamud, Mais Darras, Mohammad Al Shhab, Rand Abu-Raideh, Hilweh Ismail, Ali Al-Hamadi, Ali Abdelhay, Kanhaiya Singh
    PLOS ONE.2021; 16(10): e0257857.     CrossRef
  • Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases
    Mustafa Karabicici, Yagmur Azbazdar, Evin Iscan, Gunes Ozhan
    Membranes.2021; 11(11): 844.     CrossRef
Original Article
Metabolic Risk/Epidemiology
Article image
Sex-, Age-, and Metabolic Disorder-Dependent Distributions of Selected Inflammatory Biomarkers among Community-Dwelling Adults
So Mi Jemma Cho, Hokyou Lee, Jee-Seon Shim, Hyeon Chang Kim
Diabetes Metab J. 2020;44(5):711-725.   Published online April 16, 2020
DOI: https://doi.org/10.4093/dmj.2019.0119
  • 6,216 View
  • 83 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background

Inflammatory cytokines are increasingly utilized to detect high-risk individuals for cardiometabolic diseases. However, with large population and assay methodological heterogeneity, no clear reference currently exists.

Methods

Among participants of the Cardiovascular and Metabolic Diseases Etiology Research Center cohort, of community-dwelling adults aged 30 to 64 without overt cardiovascular diseases, we presented distributions of tumor necrosis factor (TNF)-α and -β, interleukin (IL)-1α, -1β, and 6, monocyte chemoattractant protein (MCP)-1 and -3 and high sensitivity C-reactive protein (hsCRP) with and without non-detectable (ND) measurements using multiplex enzyme-linked immunosorbent assay. Then, we compared each markers by sex, age, and prevalence of type 2 diabetes mellitus, hypertension, and dyslipidemia, using the Wilcoxon Rank-Sum Test.

Results

In general, there were inconsistencies in direction and magnitude of differences in distributions by sex, age, and prevalence of cardiometabolic disorders. Overall, the median and the 99th percentiles were higher in men than in women. Older participants had higher TNF-α, high sensitivity IL-6 (hsIL-6), MCP-1, hsCRP, TNF-β, and MCP-3 median, after excluding the NDs. Participants with type 2 diabetes mellitus had higher median for all assayed biomarkers, except for TNF-β, IL-1α, and MCP-3, in which the medians for both groups were 0.00 due to predominant NDs. Compared to normotensive group, participants with hypertension had higher TNF-α, hsIL-6, MCP-1, and hsCRP median. When stratifying by dyslipidemia prevalence, the comparison varied significantly depending on the treatment of NDs.

Conclusion

Our findings provide sex-, age-, and disease-specific reference values to improve risk prediction and diagnostic performance for inflammatory diseases in both population- and clinic-based settings.

Citations

Citations to this article as recorded by  
  • Characterizing CD8+ TEMRA Cells in CP/CPPS Patients: Insights from Targeted Single-Cell Transcriptomic and Functional Investigations
    Fei Zhang, Qintao Ge, Jialin Meng, Jia Chen, Chaozhao Liang, Meng Zhang
    ImmunoTargets and Therapy.2024; Volume 13: 111.     CrossRef
  • Association between physical activity and inflammatory markers in community-dwelling, middle-aged adults
    So Mi Jemma Cho, Hokyou Lee, Jee-Seon Shim, Justin Y. Jeon, Hyeon Chang Kim
    Applied Physiology, Nutrition, and Metabolism.2021; 46(7): 828.     CrossRef
  • The monocyte-to-lymphocyte ratio: Sex-specific differences in the tuberculosis disease spectrum, diagnostic indices and defining normal ranges
    Thomas S. Buttle, Claire Y. Hummerstone, Thippeswamy Billahalli, Richard J. B. Ward, Korina E. Barnes, Natalie J. Marshall, Viktoria C. Spong, Graham H. Bothamley, Selvakumar Subbian
    PLOS ONE.2021; 16(8): e0247745.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer