Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
8 "Energy metabolism"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Pathophysiology
Primordial Drivers of Diabetes Heart Disease: Comprehensive Insights into Insulin Resistance
Yajie Fan, Zhipeng Yan, Tingting Li, Aolin Li, Xinbiao Fan, Zhongwen Qi, Junping Zhang
Diabetes Metab J. 2024;48(1):19-36.   Published online January 3, 2024
DOI: https://doi.org/10.4093/dmj.2023.0110
  • 1,963 View
  • 175 Download
AbstractAbstract PDFPubReader   ePub   
Insulin resistance has been regarded as a hallmark of diabetes heart disease (DHD). Numerous studies have shown that insulin resistance can affect blood circulation and myocardium, which indirectly cause cardiac hypertrophy and ventricular remodeling, participating in the pathogenesis of DHD. Meanwhile, hyperinsulinemia, hyperglycemia, and hyperlipidemia associated with insulin resistance can directly impair the metabolism and function of the heart. Targeting insulin resistance is a potential therapeutic strategy for the prevention of DHD. Currently, the role of insulin resistance in the pathogenic development of DHD is still under active research, as the pathological roles involved are complex and not yet fully understood, and the related therapeutic approaches are not well developed. In this review, we describe insulin resistance and add recent advances in the major pathological and physiological changes and underlying mechanisms by which insulin resistance leads to myocardial remodeling and dysfunction in the diabetic heart, including exosomal dysfunction, ferroptosis, and epigenetic factors. In addition, we discuss potential therapeutic approaches to improve insulin resistance and accelerate the development of cardiovascular protection drugs.
Original Article
Basic Research
Altered Metabolic Phenotypes and Hypothalamic Neuronal Activity Triggered by Sodium-Glucose Cotransporter 2 Inhibition
Ho Gyun Lee, Il Hyeon Jung, Byong Seo Park, Hye Rim Yang, Kwang Kon Kim, Thai Hien Tu, Jung-Yong Yeh, Sewon Lee, Sunggu Yang, Byung Ju Lee, Jae Geun Kim, Il Seong Nam-Goong
Diabetes Metab J. 2023;47(6):784-795.   Published online August 23, 2023
DOI: https://doi.org/10.4093/dmj.2022.0261
  • 1,336 View
  • 149 Download
  • 2 Crossref
AbstractAbstract PDFPubReader   ePub   
Background
Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are currently used to treat patients with diabetes. Previous studies have demonstrated that treatment with SGLT-2 inhibitors is accompanied by altered metabolic phenotypes. However, it has not been investigated whether the hypothalamic circuit participates in the development of the compensatory metabolic phenotypes triggered by the treatment with SGLT-2 inhibitors.
Methods
Mice were fed a standard diet or high-fat diet and treated with dapagliflozin, an SGLT-2 inhibitor. Food intake and energy expenditure were observed using indirect calorimetry system. The activity of hypothalamic neurons in response to dapagliflozin treatment was evaluated by immunohistochemistry with c-Fos antibody. Quantitative real-time polymerase chain reaction was performed to determine gene expression patterns in the hypothalamus of dapagliflozin-treated mice.
Results
Dapagliflozin-treated mice displayed enhanced food intake and reduced energy expenditure. Altered neuronal activities were observed in multiple hypothalamic nuclei in association with appetite regulation. Additionally, we found elevated immunosignals of agouti-related peptide neurons in the paraventricular nucleus of the hypothalamus.
Conclusion
This study suggests the functional involvement of the hypothalamus in the development of the compensatory metabolic phenotypes induced by SGLT-2 inhibitor treatment.

Citations

Citations to this article as recorded by  
  • Altered Metabolic Phenotypes and Hypothalamic Neuronal Activity Triggered by Sodium-Glucose Cotransporter 2 Inhibition (Diabetes Metab J 2023;47:784-95)
    Jae Hyun Bae
    Diabetes & Metabolism Journal.2024; 48(1): 157.     CrossRef
  • Altered Metabolic Phenotypes and Hypothalamic Neuronal Activity Triggered by Sodium-Glucose Cotransporter 2 Inhibition (Diabetes Metab J 2023;47:784-95)
    Ho Gyun Lee, Il Hyeon Jung, Byong Seo Park, Hye Rim Yang, Kwang Kon Kim, Thai Hien Tu, Jung-Yong Yeh, Sewon Lee, Sunggu Yang, Byung Ju Lee, Jae Geun Kim, Il Seong Nam-Goong
    Diabetes & Metabolism Journal.2024; 48(1): 159.     CrossRef
Reviews
Basic Research
Brown Fat as a Regulator of Systemic Metabolism beyond Thermogenesis
Okamatsu-Ogura Yuko, Masayuki Saito
Diabetes Metab J. 2021;45(6):840-852.   Published online June 25, 2021
DOI: https://doi.org/10.4093/dmj.2020.0291
  • 8,914 View
  • 504 Download
  • 14 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFPubReader   ePub   
Brown adipose tissue (BAT) is a specialized tissue for nonshivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. Moreover, several remarkable advancements have been made in brown fat biology over the past decade: The molecular and functional analyses of inducible thermogenic adipocytes (socalled beige adipocytes) arising from a developmentally different lineage from classical brown adipocytes have been accelerated. In addition to a well-established thermogenic activity of uncoupling protein 1 (UCP1), several alternative thermogenic mechanisms have been discovered, particularly in beige adipocytes. It has become clear that BAT influences other peripheral tissues and controls their functions and systemic homeostasis of energy and metabolic substrates, suggesting BAT as a metabolic regulator, other than for thermogenesis. This notion is supported by discovering that various paracrine and endocrine factors are secreted from BAT. We review the current understanding of BAT pathophysiology, particularly focusing on its role as a metabolic regulator in small rodents and also in humans.

Citations

Citations to this article as recorded by  
  • Brown adipose tissue evaluation using water and triglyceride as indices by diffuse reflectance spectroscopy
    Tomomi Iida, Yukio Ueda, Hideo Tsukada, Dai Fukumoto, Takafumi Hamaoka
    Journal of Biophotonics.2024;[Epub]     CrossRef
  • White-brown adipose tissue interplay in polycystic ovary syndrome: Therapeutic avenues
    Khadijeh Abbasi, Reza Zarezadeh, Amir Valizadeh, Amir Mehdizadeh, Hamed Hamishehkar, Mohammad Nouri, Masoud Darabi
    Biochemical Pharmacology.2024; 220: 116012.     CrossRef
  • Brown Adipose Tissue, Batokines, and Bioactive Compounds in Foods: An Update
    Fabiane Ferreira Martins, Bruna Cadete Martins, Ananda Vitoria Silva Teixeira, Matheus Ajackson, Vanessa Souza‐Mello, Julio Beltrame Daleprane
    Molecular Nutrition & Food Research.2024;[Epub]     CrossRef
  • Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders
    Masayuki Saito, Yuko Okamatsu-Ogura
    The World Journal of Men's Health.2023; 41(3): 489.     CrossRef
  • Interplay of skeletal muscle and adipose tissue: sarcopenic obesity
    Min Jeong Park, Kyung Mook Choi
    Metabolism.2023; 144: 155577.     CrossRef
  • White adipose tissue undergoes browning during preweaning period in association with microbiota formation in mice
    Anju Tsukada, Yuko Okamatsu-Ogura, Emi Futagawa, Yuki Habu, Natsumi Takahashi, Mira Kato-Suzuki, Yuko Kato, Satoshi Ishizuka, Kei Sonoyama, Kazuhiro Kimura
    iScience.2023; 26(7): 107239.     CrossRef
  • In situ fluorescence-photoacoustic measurement of the changes of brown adipose tissue in mice under hindlimb unloading
    Baojie Gong, Jianxin Tang, Xiaoxiao Jiang, Zhe Zhang, Shiying Li, Hongjun Jin, Liming Nie, Guojia Huang
    Journal of Applied Physiology.2023; 135(2): 251.     CrossRef
  • Age-Related Expression Dynamics of Uncoupling Protein 1 in Adipose Tissues of ICR Outbred Mice during Postnatal Ontogenesis
    A. V. Yakunenkov, E. I. Elsukova, I. O. Natochy
    Journal of Evolutionary Biochemistry and Physiology.2023; 59(4): 1020.     CrossRef
  • Antibodies Regulate Dual-Function Enzyme IYD to Induce Functional Synergy between Metabolism and Thermogenesis
    Sunghyun Kang, Hwan-Woo Park, Kyung Ho Han
    International Journal of Molecular Sciences.2022; 23(14): 7834.     CrossRef
  • Machine learning-featured Secretogranin V is a circulating diagnostic biomarker for pancreatic adenocarcinomas associated with adipopenia
    Yunju Jo, Min-Kyung Yeo, Tam Dao, Jeongho Kwon, Hyon‐Seung Yi, Dongryeol Ryu
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Possible roles of exercise and apelin against pregnancy complications
    Hamed Alizadeh Pahlavani
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Relationships between the expression of adipose genes and profiles of hospitalized dogs
    Yukina Sugiyama, Fumie Shimokawa, Kazutoshi Sugiyama, Takashi Kobayashi, Yusuke Yamashita, Kei Kazama, Ken Onda, Masayuki Funaba, Masaru Murakami
    Veterinary Research Communications.2022; 46(4): 1239.     CrossRef
  • Garlic (Allium sativum L.) in diabetes and its complications: Recent advances in mechanisms of action
    Yayi Jiang, Rensong Yue, Guojie Liu, Jun Liu, Bo Peng, Maoyi Yang, Lianxue Zhao, Zihan Li
    Critical Reviews in Food Science and Nutrition.2022; : 1.     CrossRef
  • Fruit of Gardenia jasminoides Induces Mitochondrial Activation and Non-Shivering Thermogenesis through Regulation of PPARγ
    Woo Yong Park, Gahee Song, Ja Yeon Park, Kwan-Il Kim, Kwang Seok Ahn, Hyun Jeong Kwak, Jungtae Leem, Jae-Young Um, Jinbong Park
    Antioxidants.2021; 10(9): 1418.     CrossRef
Basic Research
Revisiting the Bacterial Phylum Composition in Metabolic Diseases Focused on Host Energy Metabolism
Yeonmi Lee, Hui-Young Lee
Diabetes Metab J. 2020;44(5):658-667.   Published online July 9, 2020
DOI: https://doi.org/10.4093/dmj.2019.0220
  • 8,891 View
  • 130 Download
  • 19 Web of Science
  • 19 Crossref
AbstractAbstract PDFPubReader   ePub   

Over a hundred billion bacteria are found in human intestines. This has emerged as an environmental factor in metabolic diseases, such as obesity and related diseases. The majority of these bacteria belong to two dominant phyla, Bacteroidetes and Firmicutes. Since the ratio of Firmicutes to Bacteroidetes increases in people with obesity and in various animal models, it has been assumed that phylum composition causes the increase in occurrence of metabolic diseases over the past decade. However, this assumption has been challenged by recent studies that have found even an opposite association of phylum composition within metabolic diseases. Moreover, the gut microbiota affects host energy metabolism in various ways including production of metabolites and interaction with host intestinal cells to regulate signaling pathways that affect energy metabolism. However, the direct effect of gut bacteria on host energy intake, such as energy consumption by the bacteria itself and its effects on intestinal energy absorption, has been underestimated. This review aims to discuss whether increased ratio of Firmicutes to Bacteroidetes is associated with the development of metabolic diseases, and whether energy competition between the bacteria and host is a missing part of the mechanism linking gut microbiota to metabolic diseases.

Citations

Citations to this article as recorded by  
  • Behavior, intestinal health, and growth of small sea cucumbers Apostichopus japonicus in different color morphs
    Peng Ding, Yushi Yu, Zihe Zhao, Xiang Li, Xiajing Wang, Huiyan Wang, Xiyuan Huang, Jun Ding, Chong Zhao
    Marine Environmental Research.2024; 193: 106300.     CrossRef
  • Traditional Chinese Medicine formula Dai-Zong-Fang alleviating hepatic steatosis in db/db mice via gut microbiota modulation
    Li-Wei Zhang, Li-Li Zhu, Xiao-Yun Zhu, Shou-Qiang Fu, Xi-Ming Liu
    Frontiers in Pharmacology.2024;[Epub]     CrossRef
  • Repeated inoculation with rumen fluid accelerates the rumen bacterial transition with no benefit on production performance in postpartum Holstein dairy cows
    Fanlin Kong, Feiran Wang, Yijia Zhang, Shuo Wang, Wei Wang, Shengli Li
    Journal of Animal Science and Biotechnology.2024;[Epub]     CrossRef
  • Identification of oncogenic signatures in the inflammatory colon of C57BL/6 mice fed a high-fat diet
    Huawei Zeng, Bryan D. Safratowich, Wen-Hsing Cheng, Michael R. Bukowski
    The Journal of Nutritional Biochemistry.2023; 111: 109188.     CrossRef
  • Evaluation of the gut microbiome alterations in healthy rats after dietary exposure to different synthetic ZnO nanoparticles
    Xinyi Zhu, Henghui Li, Liuzhu Zhou, Huijun Jiang, Minghui Ji, Jin Chen
    Life Sciences.2023; 312: 121250.     CrossRef
  • Microplastic-induced gut microbiota and serum metabolic disruption in Sprague-Dawley rats
    Nan Zhao, Meirong Zhao, Hangbiao Jin
    Environmental Pollution.2023; 320: 121071.     CrossRef
  • Effects of neutral polysaccharide from Platycodon grandiflorum on high-fat diet-induced obesity via the regulation of gut microbiota and metabolites
    Jing Song, Qin liu, Mengqi Hao, Xiaohu Zhai, Juan Chen
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Metabolite interactions between host and microbiota during health and disease: Which feeds the other?
    Yan Zhang, Rui Chen, DuoDuo Zhang, Shuang Qi, Yan Liu
    Biomedicine & Pharmacotherapy.2023; 160: 114295.     CrossRef
  • Connecting Gut Microbial Diversity with Plasma Metabolome and Fecal Bile Acid Changes Induced by the Antibiotics Tobramycin and Colistin Sulfate
    Aishwarya Murali, Varun Giri, Franziska Maria Zickgraf, Philipp Ternes, Hunter James Cameron, Saskia Sperber, Volker Haake, Peter Driemert, Hennicke Kamp, Dorothee Funk-Weyer, Shana J. Sturla, Ivonne M.C.M. Rietjens, Bennard van Ravenzwaay
    Chemical Research in Toxicology.2023; 36(4): 598.     CrossRef
  • Short-Term Alternate Feeding between Terrestrially Sourced Oil- and Fish Oil-Based Diets Modulates the Intestinal Microecology of Juvenile Turbot
    Xiuhua Ma, Yaoyao Kong, Houguo Xu, Qingzhu Bi, Mengqing Liang, Kangsen Mai, Yanjiao Zhang
    Biology.2023; 12(5): 650.     CrossRef
  • Effects and action mechanisms of lotus leaf (Nelumbo nucifera) ethanol extract on gut microbes and obesity in high-fat diet-fed rats
    Zhang Yanan, Ma Lu, Zhang Lu, Huo Jinhai, Wang Weiming
    Frontiers in Nutrition.2023;[Epub]     CrossRef
  • Effects of coffee with different roasting degrees on obesity and related metabolic disorders
    Claudia I. Gamboa-Gómez, Laura J. Barragán-Zúñiga, Fernando Guerrero-Romero, Gerardo Martínez-Aguilar, José Luis Gónzalez, Almendra A. Valenzuela-Ramírez, Juan A. Rojas-Contreras, Monica Anese, Maribel Cervantes Flores, Marilisa Alongi
    Journal of Functional Foods.2023; 111: 105889.     CrossRef
  • Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis
    Roman Maslennikov, Elena Poluektova, Oxana Zolnikova, Alla Sedova, Anastasia Kurbatova, Yulia Shulpekova, Natyia Dzhakhaya, Svetlana Kardasheva, Maria Nadinskaia, Elena Bueverova, Vladimir Nechaev, Anna Karchevskaya, Vladimir Ivashkin
    International Journal of Molecular Sciences.2023; 24(22): 16502.     CrossRef
  • Eugenol, A Major Component of Clove Oil, Attenuates Adiposity, and Modulates Gut Microbiota in High‐Fat Diet‐Fed Mice
    Mengjie Li, Yuhan Zhao, Yanan Wang, Ruixuan Geng, Jingjing Fang, Seong‐Gook Kang, Kunlun Huang, Tao Tong
    Molecular Nutrition & Food Research.2022;[Epub]     CrossRef
  • Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet
    Yu Wang, Ting Li, Yueyue Liu, Chengcheng Yang, Lei Liu, Xiangnan Zhang, Xingbin Yang
    Food & Function.2022; 13(24): 13014.     CrossRef
  • The Interplay of Sex Steroids, the Immune Response, and the Intestinal Microbiota
    Fernanda Pace, Paula I. Watnick
    Trends in Microbiology.2021; 29(9): 849.     CrossRef
  • Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals
    Amlan Kumar Patra, Indrajit Kar
    Journal of Animal Science and Technology.2021; 63(2): 211.     CrossRef
  • Mechanisms linking gut microbial metabolites to insulin resistance
    Hye Rim Jang, Hui-Young Lee
    World Journal of Diabetes.2021; 12(6): 730.     CrossRef
  • The impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health
    Lenka Tomasova, Marian Grman, Karol Ondrias, Marcin Ufnal
    Nutrition & Metabolism.2021;[Epub]     CrossRef
Original Article
Basic Research
Effects of Microbiota on the Treatment of Obesity with the Natural Product Celastrol in Rats
Weiyue Hu, Lingling Wang, Guizhen Du, Quanquan Guan, Tianyu Dong, Ling Song, Yankai Xia, Xinru Wang
Diabetes Metab J. 2020;44(5):747-763.   Published online May 11, 2020
DOI: https://doi.org/10.4093/dmj.2019.0124
  • 9,224 View
  • 136 Download
  • 16 Web of Science
  • 17 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background

Obesity has become one of the most serious issues threatening the health of humankind, and we conducted this study to examine whether and how celastrol protects against obesity.

Methods

We fed male Sprague-Dawley rats a high-fat diet and administered celastrol to obese rats for 3 weeks. By recording body weight (BW) and other measures, we identified the effective dose of celastrol for obesity treatment. Feces were collected to perform 16S rRNA sequencing, and hypothalami were extracted for transcriptome sequencing. We then treated leptin knockout rats with celastrol and explored the changes in energy metabolism. Male Institute of Cancer Research (ICR) mice were used to test the acute toxicity of celastrol.

Results

We observed that celastrol reduced BW and promoted energy expenditure at a dose of 500 µg/kg BW but that food intake was not changed after administration. The diversity of the gut microbiota was improved, with an increased ratio of Bacteroidetes to Firmicutes, and the gut microbiota played an important role in the anti-obesity effects of celastrol. Hypothalamic transcriptome analysis showed a significant enrichment of the leptin signaling pathway, and we found that celastrol significantly enhanced energy expenditure, which was mediated by the leptin signaling pathway. Acute lethal toxicity of celastrol was not observed at doses ranging from 0 to 62.5 mg/kg BW.

Conclusion

Our study revealed that celastrol decreased the BW of obese rats by enhancing energy expenditure but not by suppressing food intake and that this effect was mediated by the improvement of the gut microbiota and the activation of the hypothalamic leptin signaling pathway.

Citations

Citations to this article as recorded by  
  • Natural compounds as obesity pharmacotherapies
    Xin‐Yuan Zhao, Ji‐Qiu Wang, G. Gregory Neely, Yan‐Chuan Shi, Qiao‐Ping Wang
    Phytotherapy Research.2024; 38(2): 797.     CrossRef
  • Celastrol functions as an emerging manager of lipid metabolism: Mechanism and therapeutic potential
    Jia Gu, Ya-Ning Shi, Neng Zhu, Hong-Fang Li, Chan-Juan Zhang, Li Qin
    Biomedicine & Pharmacotherapy.2023; 164: 114981.     CrossRef
  • Tripterygium hypoglaucum extract ameliorates adjuvant-induced arthritis in mice through the gut microbiota
    Jianghui HU, Jimin NI, Junping ZHENG, Yanlei GUO, Yong YANG, Cheng YE, Xiongjie SUN, Hui XIA, Yanju LIU, Hongtao LIU
    Chinese Journal of Natural Medicines.2023; 21(10): 730.     CrossRef
  • Health improvements of type 2 diabetic patients through diet and diet plus fecal microbiota transplantation
    Lili Su, Zhifan Hong, Tong Zhou, Yuanyuan Jian, Mei Xu, Xuanping Zhang, Xiaoyan Zhu, Jiayin Wang
    Scientific Reports.2022;[Epub]     CrossRef
  • Tripterygium hypoglaucum (Levl.) Hutch: A systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology
    Jiangping Wei, Liyun Chen, Sijia Gao, Jirui Wang, Yunhong Wang, Zhiwei Zhang, Yuyu Zhang, Xiaomei Zhang, Yong Yang, Dajian Yang
    Pharmacological Research - Modern Chinese Medicine.2022; 3: 100094.     CrossRef
  • Celastrol: An Update on Its Hepatoprotective Properties and the Linked Molecular Mechanisms
    Mengzhen Li, Faren Xie, Lu Wang, Guoxue Zhu, Lian-Wen Qi, Shujun Jiang
    Frontiers in Pharmacology.2022;[Epub]     CrossRef
  • Celastrol inhibits the proliferation and migration of MCF-7 cells through the leptin-triggered PI3K/AKT pathway
    Pingping Chen, Bin Wang, Meng Li, Chunxue Cui, Fei Liu, Yonggang Gao
    Computational and Structural Biotechnology Journal.2022; 20: 3173.     CrossRef
  • Investigating Celastrol’s Anti-DCM Targets and Mechanisms via Network Pharmacology and Experimental Validation
    Rui Xi, Yongxin Wan, Lihong Yang, Jingying Zhang, Liu Yang, Shuai Yang, Rui Chai, Fengchen Mu, Qiting Sun, Rui Yan, Zhifang Wu, Sijin Li, Zhijun Liao
    BioMed Research International.2022; 2022: 1.     CrossRef
  • Celastrol inhibits TXNIP expression to protect pancreatic β cells in diabetic mice
    Si-wei Wang, Tian Lan, Fang Zheng, Hui Huang, Hang-fei Chen, Qi Wu, Feng Zhang
    Phytomedicine.2022; 104: 154316.     CrossRef
  • Celastrol: A Promising Agent Fighting against Cardiovascular Diseases
    Zhexi Li, Jingyi Zhang, Xulei Duan, Guoan Zhao, Min Zhang
    Antioxidants.2022; 11(8): 1597.     CrossRef
  • Celastrol: A lead compound that inhibits SARS‐CoV‐2 replication, the activity of viral and human cysteine proteases, and virus‐induced IL‐6 secretion
    Carlos A. Fuzo, Ronaldo B. Martins, Thais F. C. Fraga‐Silva, Martin K. Amstalden, Thais Canassa De Leo, Juliano P. Souza, Thais M. Lima, Lucia H. Faccioli, Débora Noma Okamoto, Maria Aparecida Juliano, Suzelei C. França, Luiz Juliano, Vania L. D. Bonato,
    Drug Development Research.2022; 83(7): 1623.     CrossRef
  • In vitro activity of celastrol in combination with thymol against carbapenem-resistant Klebsiella pneumoniae isolates
    Mahmoud Saad Abdel-Halim, Momen Askoura, Basem Mansour, Galal Yahya, Amira M. El-Ganiny
    The Journal of Antibiotics.2022; 75(12): 679.     CrossRef
  • Celastrol alleviates metabolic disturbance in high‐fat diet‐induced obese mice through increasing energy expenditure by ameliorating metabolic inflammation
    Xueping Yang, Fan Wu, Lingli Li, Ernest C. Lynch, Linglin Xie, Yan Zhao, Ke Fang, Jingbin Li, Jinlong Luo, Lijun Xu, Xin Zou, Fuer Lu, Guang Chen
    Phytotherapy Research.2021; 35(1): 297.     CrossRef
  • Celastrol in metabolic diseases: Progress and application prospects
    Shaohua Xu, Yaqian Feng, Weishen He, Wen Xu, Wei Xu, Hongjun Yang, Xianyu Li
    Pharmacological Research.2021; 167: 105572.     CrossRef
  • The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism
    Qijing Fan, Furong Xu, Bin Liang, Xiaoju Zou
    Frontiers in Pharmacology.2021;[Epub]     CrossRef
  • Serum Metabolome Mediates the Antiobesity Effect of Celastrol-Induced Gut Microbial Alterations
    Shaohua Xu, Liwei Lyu, Huaichang Zhu, Xiaoqiang Huang, Wei Xu, Wen Xu, Yaqian Feng, Yong Fan
    Journal of Proteome Research.2021; 20(10): 4840.     CrossRef
  • Interrelated Mechanism by Which the Methide Quinone Celastrol, Obtained from the Roots of Tripterygium wilfordii, Inhibits Main Protease 3CLpro of COVID-19 and Acts as Superoxide Radical Scavenger
    Francesco Caruso, Manrose Singh, Stuart Belli, Molly Berinato, Miriam Rossi
    International Journal of Molecular Sciences.2020; 21(23): 9266.     CrossRef
Reviews
Basic Research
Role of CRTC2 in Metabolic Homeostasis: Key Regulator of Whole-Body Energy Metabolism?
Hye-Sook Han, Yongmin Kwon, Seung-Hoi Koo
Diabetes Metab J. 2020;44(4):498-508.   Published online March 5, 2020
DOI: https://doi.org/10.4093/dmj.2019.0200
  • 6,807 View
  • 162 Download
  • 14 Web of Science
  • 16 Crossref
AbstractAbstract PDFPubReader   ePub   

Cyclic adenosine monophosphate (cAMP) signaling is critical for regulating metabolic homeostasis in mammals. In particular, transcriptional regulation by cAMP response element-binding protein (CREB) and its coactivator, CREB-regulated transcription coactivator (CRTC), is essential for controlling the expression of critical enzymes in the metabolic process, leading to more chronic changes in metabolic flux. Among the CRTC isoforms, CRTC2 is predominantly expressed in peripheral tissues and has been shown to be associated with various metabolic pathways in tissue-specific manners. While initial reports showed the physiological role of CRTC2 in regulating gluconeogenesis in the liver, recent studies have further delineated the role of this transcriptional coactivator in the regulation of glucose and lipid metabolism in various tissues, including the liver, pancreatic islets, endocrine tissues of the small intestines, and adipose tissues. In this review, we discuss recent studies that have utilized knockout mouse models to delineate the role of CRTC2 in the regulation of metabolic homeostasis.

Citations

Citations to this article as recorded by  
  • Integration of genomic and transcriptomic data of inbred mouse models for polygenic obesity and leanness revealed “obese” and “lean” candidate alleles in polyadenylation signals
    Martin Šimon, Špela Mikec, Nicholas M. Morton, Santosh S. Atanur, Simon Horvat, Tanja Kunej
    Gene Reports.2024; 35: 101903.     CrossRef
  • Mylabris phalerata induces the apoptosis and cell cycle delay in HCC, and potentiates the effect of sorafenib based on the molecular and network pharmacology approach
    Young Woo Kim, Seon Been Bak, Su Youn Baek, Il Kon Kim, Won-Yung Lee, Un-Jung Yun, Kwang-Il Park
    Molecular & Cellular Toxicology.2023; 19(4): 731.     CrossRef
  • Emerging Role of SMILE in Liver Metabolism
    Nanthini Sadasivam, Kamalakannan Radhakrishnan, Hueng-Sik Choi, Don-Kyu Kim
    International Journal of Molecular Sciences.2023; 24(3): 2907.     CrossRef
  • PIMT regulates hepatic gluconeogenesis in mice
    Bandish Kapadia, Soma Behera, Sireesh T. Kumar, Tapan Shah, Rebecca Kristina Edwin, Phanithi Prakash Babu, Partha Chakrabarti, Kishore V.L. Parsa, Parimal Misra
    iScience.2023; 26(3): 106120.     CrossRef
  • Biological functions of CRTC2 and its role in metabolism-related diseases
    Hong-Yu Zheng, Yan-Xia Wang, Kun Zhou, Hai-Lin Xie, Zhong Ren, Hui-Ting Liu, Yang-Shao Ou, Zhi-Xiang Zhou, Zhi-Sheng Jiang
    Journal of Cell Communication and Signaling.2023; 17(3): 495.     CrossRef
  • An insulin-regulated arrestin domain protein controls hepatic glucagon action
    Sezin Dagdeviren, Megan F. Hoang, Mohsen Sarikhani, Vanessa Meier, Jake C. Benoit, Marinna C. Okawa, Veronika Y. Melnik, Elisabeth M. Ricci-Blair, Natalie Foot, Randall H. Friedline, Xiaodi Hu, Lauren A. Tauer, Arvind Srinivasan, Maxim B. Prigozhin, Sudha
    Journal of Biological Chemistry.2023; 299(8): 105045.     CrossRef
  • The Pleiotropic Face of CREB Family Transcription Factors
    Md. Arifur Rahman Chowdhury, Jungeun An, Sangyun Jeong
    Molecules and Cells.2023; 46(7): 399.     CrossRef
  • It is a branched road to adipose tissue aging
    N. Touitou, B. Lerrer, H. Y. Cohen
    Nature Aging.2023; 3(8): 911.     CrossRef
  • Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement
    Hye-Sook Han, Eunyong Ahn, Eun Seo Park, Tom Huh, Seri Choi, Yongmin Kwon, Byeong Hun Choi, Jueun Lee, Yoon Ha Choi, Yujin L. Jeong, Gwang Bin Lee, Minji Kim, Je Kyung Seong, Hyun Mu Shin, Hang-Rae Kim, Myeong Hee Moon, Jong Kyoung Kim, Geum-Sook Hwang, S
    Nature Aging.2023; 3(8): 982.     CrossRef
  • Exploring the diagnostic value, prognostic value, and biological functions of NPC gene family members in hepatocellular carcinoma based on a multi-omics analysis
    Keheng Chen, Xin Zhang, Huixin Peng, Fengdie Huang, Guangyu Sun, Qijiang Xu, Lusheng Liao, Zhiyong Xing, Yanping Zhong, Zhichao Fang, Meihua Liao, Shihua Luo, Wencheng Chen, Mingyou Dong
    Functional & Integrative Genomics.2023;[Epub]     CrossRef
  • MicroRNA regulation of AMPK in nonalcoholic fatty liver disease
    Hao Sun, Jongsook Kim Kemper
    Experimental & Molecular Medicine.2023; 55(9): 1974.     CrossRef
  • Serine active site containing protein 1 depletion alters lipid metabolism and protects against high fat diet-induced obesity in mice
    Miaomiao Du, Xueyun Li, Fangyi Xiao, Yinxu Fu, Yu Shi, Sihan Guo, Lifang Chen, Lu Shen, Lan Wang, Huang Cheng, Hao Li, Anran Xie, Yaping Zhou, Kaiqiang Yang, Hezhi Fang, Jianxin Lyu, Qiongya Zhao
    Metabolism.2022; 134: 155244.     CrossRef
  • cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach
    Muhammad Bilal Ahmed, Abdullah A. A. Alghamdi, Salman Ul Islam, Joon-Seok Lee, Young-Sup Lee
    Cells.2022; 11(13): 2020.     CrossRef
  • Hepatic Sam68 Regulates Systemic Glucose Homeostasis and Insulin Sensitivity
    Aijun Qiao, Wenxia Ma, Ying Jiang, Chaoshan Han, Baolong Yan, Junlan Zhou, Gangjian Qin
    International Journal of Molecular Sciences.2022; 23(19): 11469.     CrossRef
  • The Role of Small Heterodimer Partner-Interacting Leucine Zipper (SMILE) as a Transcriptional Corepressor in Hepatic Glucose and Lipid Metabolism
    Woo-Ram Park, Byungyoon Choi, Nanthini Sadasivam, Don-Kyu Kim
    Trends in Agriculture & Life Sciences.2022; 60: 7.     CrossRef
  • AMPK Localization: A Key to Differential Energy Regulation
    Qonita Afinanisa, Min Kyung Cho, Hyun-A Seong
    International Journal of Molecular Sciences.2021; 22(20): 10921.     CrossRef
Obesity and Metabolic Syndrome
Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors
Injae Hwang, Jae Bum Kim
Diabetes Metab J. 2019;43(6):752-762.   Published online December 26, 2019
DOI: https://doi.org/10.4093/dmj.2019.0174
  • 8,780 View
  • 175 Download
  • 36 Web of Science
  • 38 Crossref
AbstractAbstract PDFPubReader   

Chronic energy surplus increases body fat, leading to obesity. Since obesity is closely associated with most metabolic complications, pathophysiological roles of adipose tissue in obesity have been intensively studied. White adipose tissue is largely divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). These two white adipose tissues are similar in their appearance and lipid storage functions. Nonetheless, emerging evidence has suggested that SAT and VAT have different characteristics and functional roles in metabolic regulation. It is likely that there are intrinsic differences between VAT and SAT. In diet-induced obese animal models, it has been reported that adipogenic progenitors in VAT rapidly proliferate and differentiate into adipocytes. In obesity, VAT exhibits elevated inflammatory responses, which are less prevalent in SAT. On the other hand, SAT has metabolically beneficial effects. In this review, we introduce recent studies that focus on cellular and molecular components modulating adipogenesis and immune responses in SAT and VAT. Given that these two fat depots show different functions and characteristics depending on the nutritional status, it is feasible to postulate that SAT and VAT have different developmental origins with distinct adipogenic progenitors, which would be a key determining factor for the response and accommodation to metabolic input for energy homeostasis.

Citations

Citations to this article as recorded by  
  • Lipodystrophy as a target to delay premature aging
    Daniela G. Costa, Marisa Ferreira-Marques, Cláudia Cavadas
    Trends in Endocrinology & Metabolism.2024; 35(2): 97.     CrossRef
  • Association between abdominal adiposity and clinical outcomes in patients with acute ischemic stroke
    Kayo Wakisaka, Ryu Matsuo, Fumi Irie, Yoshinobu Wakisaka, Tetsuro Ago, Masahiro Kamouchi, Takanari Kitazono, Masaki Mogi
    PLOS ONE.2024; 19(1): e0296833.     CrossRef
  • NOTCH1 as a Negative Regulator of Avian Adipocyte Differentiation: Implications for Fat Deposition
    Zheng Wang, Yue Su, Mingyu Zhao, Zhenhua Ma, Jianhui Li, Zhuocheng Hou, Huifeng Li
    Animals.2024; 14(4): 585.     CrossRef
  • Green tea beneficial effects involve changes in the profile of immune cells in the adipose tissue of obese mice
    Kaue Tognolli, Victoria Silva, Celso Pereira Batista Sousa-Filho, Claudia Andrea Lima Cardoso, Renata Gorjão, Rosemari Otton
    European Journal of Nutrition.2023; 62(1): 321.     CrossRef
  • Mechanic Insight into the Distinct and Common Roles of Ovariectomy Versus Adrenalectomy on Adipose Tissue Remodeling in Female Mice
    Weihao Chen, Fengyan Meng, Xianyin Zeng, Xiaohan Cao, Guixian Bu, Xiaogang Du, Guozhi Yu, Fanli Kong, Yunkun Li, Tian Gan, Xingfa Han
    International Journal of Molecular Sciences.2023; 24(3): 2308.     CrossRef
  • High-fat diet consumption by male rat offspring of obese mothers exacerbates adipose tissue hypertrophy and metabolic alterations in adult life
    Guadalupe L. Rodríguez-González, Sergio De Los Santos, Dayana Méndez-Sánchez, Luis A. Reyes-Castro, Carlos A. Ibáñez, Patricia Canto, Elena Zambrano
    British Journal of Nutrition.2023; 130(5): 783.     CrossRef
  • Obesity and the risk of cardiometabolic diseases
    Pedro L. Valenzuela, Pedro Carrera-Bastos, Adrián Castillo-García, Daniel E. Lieberman, Alejandro Santos-Lozano, Alejandro Lucia
    Nature Reviews Cardiology.2023; 20(7): 475.     CrossRef
  • Abdominal fat and muscle distributions in different stages of colorectal cancer
    Jun Han, Xinyang Liu, Min Tang, Fan Yang, Zuoyou Ding, Guohao Wu
    BMC Cancer.2023;[Epub]     CrossRef
  • Expression Analysis of hsa-miR-181a-5p, hsa-miR-143-3p, hsa-miR-132-3p and hsa-miR-23a-3p as Biomarkers in Colorectal Cancer—Relationship to the Body Mass Index
    Sofía Elena Tesolato, Daniel González-Gamo, Ana Barabash, Paula Claver, Sofía Cristina de la Serna, Inmaculada Domínguez-Serrano, Jana Dziakova, Carmen de Juan, Antonio José Torres, Pilar Iniesta
    Cancers.2023; 15(13): 3324.     CrossRef
  • Lower subcutaneous fat index predicts bone metastasis in breast cancer
    Wen Wang, Wen-Juan Huang, Ping-Ping Liu, Shuang Fu, Meng-Lin Zhang, Xin Zhang, Rui-Tao Wang, Yuan-Xi Huang
    Cancer Biomarkers.2023; 38(1): 121.     CrossRef
  • RabGAP AS160/TBC1D4 deficiency increases long-chain fatty acid transport but has little additional effect on obesity and metabolic syndrome in ADMSCs-derived adipocytes of morbidly obese women
    Agnieszka Mikłosz, Bartłomiej Łukaszuk, Elżbieta Supruniuk, Kamil Grubczak, Magdalena Kusaczuk, Adrian Chabowski
    Frontiers in Molecular Biosciences.2023;[Epub]     CrossRef
  • White adipose tissue: Distribution, molecular insights of impaired expandability, and its implication in fatty liver disease
    Griselda Rabadán-Chávez, Rocío I. Díaz de la Garza, Daniel A. Jacobo-Velázquez
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.2023; 1869(8): 166853.     CrossRef
  • Subcutaneous fat predicts bone metastasis in breast cancer: A novel multimodality-based deep learning model
    Shidi Miao, Haobo Jia, Wenjuan Huang, Ke Cheng, Wenjin Zhou, Ruitao Wang
    Cancer Biomarkers.2023; : 1.     CrossRef
  • Histological pattern and gene expression profiling of thyroid tissue in subjects with obesity
    A. Basolo, A. M. Poma, R. Giannini, G. Ceccarini, C. Pelosini, P. Fierabracci, M. U. Castany, S. Bechi Genzano, C. E. Ambrosini, G. Materazzi, L. Chiovato, F. Basolo, F. Santini, L. Torregrossa
    Journal of Endocrinological Investigation.2022; 45(2): 413.     CrossRef
  • Predictors of non-alcoholic fatty liver disease in children
    Menglong Li, Wen Shu, Jiawulan Zunong, Nubiya Amaerjiang, Huidi Xiao, Dan Li, Sten H. Vermund, Yifei Hu
    Pediatric Research.2022; 92(1): 322.     CrossRef
  • Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics
    Hahn Nahmgoong, Yong Geun Jeon, Eun Seo Park, Yoon Ha Choi, Sang Mun Han, Jeu Park, Yul Ji, Jee Hyung Sohn, Ji Seul Han, Ye Young Kim, Injae Hwang, Yun Kyung Lee, Jin Young Huh, Sung Sik Choe, Tae Jung Oh, Sung Hee Choi, Jong Kyoung Kim, Jae Bum Kim
    Cell Metabolism.2022; 34(3): 458.     CrossRef
  • WT1 in Adipose Tissue: From Development to Adult Physiology
    Karin M. Kirschner, Holger Scholz
    Frontiers in Cell and Developmental Biology.2022;[Epub]     CrossRef
  • Shall We Begin the Voyage of Adipose Tissue Exploration?
    Yong Geun Jeon
    Molecules and Cells.2022; 45(6): 362.     CrossRef
  • Mammalian adipogenesis regulator (Areg) cells use retinoic acid signalling to be non‐ and anti‐adipogenic in age‐dependent manner
    Magda Zachara, Pernille Y Rainer, Horia Hashimi, Julie M Russeil, Daniel Alpern, Radiana Ferrero, Maria Litovchenko, Bart Deplancke
    The EMBO Journal.2022;[Epub]     CrossRef
  • The fates of different types of adipose tissue after transplantation in mice
    Shenglu Jiang, Jiayan Lin, Qian Zhang, Yunjun Liao, Feng Lu, Junrong Cai
    The FASEB Journal.2022;[Epub]     CrossRef
  • Analysis of different adipose depot gene expression in cachectic patients with gastric cancer
    Jun Han, Zuoyou Ding, Qiulin Zhuang, Lei Shen, Fan Yang, Szechun Sah, Guohao Wu
    Nutrition & Metabolism.2022;[Epub]     CrossRef
  • Adipose Stromal/Stem Cell-Derived Extracellular Vesicles: Potential Next-Generation Anti-Obesity Agents
    Mariachiara Zuccarini, Patricia Giuliani, Valentina Di Liberto, Monica Frinchi, Francesco Caciagli, Vanni Caruso, Renata Ciccarelli, Giuseppa Mudò, Patrizia Di Iorio
    International Journal of Molecular Sciences.2022; 23(3): 1543.     CrossRef
  • Is There a Link between Obesity Indices and Skin Autofluorescence? A Response from the ILERVAS Project
    Enric Sánchez, Marta Sánchez, Carolina López-Cano, Marcelino Bermúdez-López, José Manuel Valdivielso, Cristina Farràs-Sallés, Reinald Pamplona, Gerard Torres, Dídac Mauricio, Eva Castro, Elvira Fernández, Albert Lecube
    Nutrients.2022; 15(1): 203.     CrossRef
  • Insights behind the Relationship between Colorectal Cancer and Obesity: Is Visceral Adipose Tissue the Missing Link?
    Alice Chaplin, Ramon Maria Rodriguez, Juan José Segura-Sampedro, Aina Ochogavía-Seguí, Dora Romaguera, Gwendolyn Barceló-Coblijn
    International Journal of Molecular Sciences.2022; 23(21): 13128.     CrossRef
  • Potential effects of nutrition-based weight loss therapies in reversing obesity-related breast cancer epigenetic marks
    Paula M. Lorenzo, Ana B. Crujeiras
    Food & Function.2021; 12(4): 1402.     CrossRef
  • Metabolomic Profiles in Adipocytes Differentiated from Adipose-Derived Stem Cells Following Exercise Training or High-Fat Diet
    Seita Osawa, Hisashi Kato, Yuki Maeda, Hisashi Takakura, Junetsu Ogasawara, Tetsuya Izawa
    International Journal of Molecular Sciences.2021; 22(2): 966.     CrossRef
  • Adipocytes Are the Control Tower That Manages Adipose Tissue Immunity by Regulating Lipid Metabolism
    Jeu Park, Jee Hyung Sohn, Sang Mun Han, Yoon Jeong Park, Jin Young Huh, Sung Sik Choe, Jae Bum Kim
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • Ceramides and Sphingosino-1-Phosphate in Obesity
    Ilona Juchnicka, Mariusz Kuźmicki, Jacek Szamatowicz
    Frontiers in Endocrinology.2021;[Epub]     CrossRef
  • Contribution of Adipose Tissue to the Chronic Immune Activation and Inflammation Associated With HIV Infection and Its Treatment
    Christine Bourgeois, Jennifer Gorwood, Anaelle Olivo, Laura Le Pelletier, Jacqueline Capeau, Olivier Lambotte, Véronique Béréziat, Claire Lagathu
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • Subcutaneous, but not visceral, adipose tissue as a marker for prognosis in gastric cancer patients with cachexia
    Jun Han, Min Tang, Chaocheng Lu, Lei Shen, Jiaqi She, Guohao Wu
    Clinical Nutrition.2021; 40(9): 5156.     CrossRef
  • miR-410-3P inhibits adipocyte differentiation by targeting IRS-1 in cancer-associated cachexia patients
    Diya Sun, Zuoyou Ding, Lei Shen, Fan Yang, Jun Han, Guohao Wu
    Lipids in Health and Disease.2021;[Epub]     CrossRef
  • Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A1 Receptor Ligands
    Mariachiara Zuccarini, Catia Lambertucci, Marzia Carluccio, Patricia Giuliani, Maurizio Ronci, Andrea Spinaci, Rosaria Volpini, Renata Ciccarelli, Patrizia Di Iorio
    Cells.2021; 10(12): 3560.     CrossRef
  • Obesity: The Crossroads of Opinion, Knowledge, and Opportunity
    L. A. Ruyatkina, D. S. Ruyatkin
    Meditsinskiy sovet = Medical Council.2020; (7): 108.     CrossRef
  • Sex Differences in Long-term Metabolic Effects of Maternal Resveratrol Intake in Adult Rat Offspring
    Purificación Ros, Francisca Díaz, Alejandra Freire-Regatillo, Pilar Argente-Arizón, Vicente Barrios, Jesús Argente, Julie A Chowen
    Endocrinology.2020;[Epub]     CrossRef
  • Adipose stem cells in obesity: challenges and opportunities
    Sunhye Shin, Asma S. El-Sabbagh, Brandon E. Lukas, Skylar J. Tanneberger, Yuwei Jiang
    Bioscience Reports.2020;[Epub]     CrossRef
  • Clinical and pathogenetic rationale for the prevention and treatment of obesity
    O.M. Korzh
    Shidnoevropejskij zurnal vnutrisnoi ta simejnoi medicini.2020; 2020(2): 146.     CrossRef
  • OBESITY: CLINICAL AND PATHOGENETIC JUSTIFICATION OF PREVENTION AND TREATMENT
    O. M. Korzh
    International Medical Journal.2020; (2): 5.     CrossRef
  • The Effect and Mechanism of Subcutaneous and Visceral Adipose Tissue Loss on Gastric Cancer Patients With Cachexia
    Jun Han, Min Tang, Guyue Zhang, Chaocheng Lu, Jiaqi She, Guohao Wu
    SSRN Electronic Journal .2020;[Epub]     CrossRef
Mitochondrial Dysfunction in Diabetic Cardiomyopathy.
Ji Hyun Ahn, Jae Taek Kim
Korean Diabetes J. 2008;32(6):467-473.   Published online December 1, 2008
DOI: https://doi.org/10.4093/kdj.2008.32.6.467
  • 2,090 View
  • 30 Download
AbstractAbstract PDF
Metabolic syndrome and diabetes are associated with increased risk of cardiac dysfunction independently of underlying coronary artery disease. The underlying pathogenesis is partially understood but accumulating evidence suggests that alterations of cardiac energy metabolism might contribute to the development of contractile dysfunction. Recent findings suggest that myocardial mitochondrial dysfunction may play an important role in the pathogenesis of cardiac contractile dysfunction in type 2 diabetes. This review is focused on evaluating mechanisms for the mitochondrial abnormalities that may be involved in the development and progression of cardiac dysfunction in diabetes.

Diabetes Metab J : Diabetes & Metabolism Journal