Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Previous issues

Page Path
HOME > Browse > Previous issues
17 Previous issues
Filter
Filter
Article category
Keywords
Authors
Funded articles
Volume 43(4); August 2019
Prev issue Next issue
Reviews
Others
Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications
Giacomo Cappon, Martina Vettoretti, Giovanni Sparacino, Andrea Facchinetti
Diabetes Metab J. 2019;43(4):383-397.   Published online July 25, 2019
DOI: https://doi.org/10.4093/dmj.2019.0121
  • 26,263 View
  • 1,146 Download
  • 202 Web of Science
  • 209 Crossref
AbstractAbstract PDFPubReader   

By providing blood glucose (BG) concentration measurements in an almost continuous-time fashion for several consecutive days, wearable minimally-invasive continuous glucose monitoring (CGM) sensors are revolutionizing diabetes management, and are becoming an increasingly adopted technology especially for diabetic individuals requiring insulin administrations. Indeed, by providing glucose real-time insights of BG dynamics and trend, and being equipped with visual and acoustic alarms for hypo- and hyperglycemia, CGM devices have been proved to improve safety and effectiveness of diabetes therapy, reduce hypoglycemia incidence and duration, and decrease glycemic variability. Furthermore, the real-time availability of BG values has been stimulating the realization of new tools to provide patients with decision support to improve insulin dosage tuning and infusion. The aim of this paper is to offer an overview of current literature and future possible developments regarding CGM technologies and applications. In particular, first, we outline the technological evolution of CGM devices through the last 20 years. Then, we discuss about the current use of CGM sensors from patients affected by diabetes, and, we report some works proving the beneficial impact provided by the adoption of CGM. Finally, we review some recent advanced applications for diabetes treatment based on CGM sensors.

Citations

Citations to this article as recorded by  
  • Identifying and mapping measures of medication safety during transfer of care in a digital era: a scoping literature review
    Catherine Leon, Helen Hogan, Yogini H Jani
    BMJ Quality & Safety.2024; 33(3): 173.     CrossRef
  • Highly sensitive and stable glucose sensing using N-type conducting polymer based organic electrochemical transistor
    Gang Zhou, Zhu Cao, Yangxuan Liu, Haoyu Zheng, Kai Xu
    Journal of Electroanalytical Chemistry.2024; 952: 117961.     CrossRef
  • Effectiveness and User Perception of an In-Vehicle Voice Warning for Hypoglycemia: Development and Feasibility Trial
    Caterina Bérubé, Vera Franziska Lehmann, Martin Maritsch, Mathias Kraus, Stefan Feuerriegel, Felix Wortmann, Thomas Züger, Christoph Stettler, Elgar Fleisch, A Baki Kocaballi, Tobias Kowatsch
    JMIR Human Factors.2024; 11: e42823.     CrossRef
  • Nafion based biosensors: a review of recent advances and applications
    Roya Mohammadzadeh Kakhki
    International Journal of Polymeric Materials and Polymeric Biomaterials.2024; 73(17): 1470.     CrossRef
  • Can Electrochemical Aptasensors Achieve the Commercial Success of Glucose Biosensors?
    Sina Ardalan, Anna Ignaszak
    Advanced Sensor Research.2024;[Epub]     CrossRef
  • Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes
    Huiqi Y. Lu, Xiaorong Ding, Jane E. Hirst, Yang Yang, Jenny Yang, Lucy Mackillop, David A. Clifton
    IEEE Reviews in Biomedical Engineering.2024; 17: 98.     CrossRef
  • Effects of Digitization of Self-Monitoring of Blood Glucose Records Using a Mobile App and the Cloud System on Outpatient Management of Diabetes: Single-Armed Prospective Study
    Tomoko Handa, Takeshi Onoue, Tomoko Kobayashi, Ryutaro Maeda, Keigo Mizutani, Ayana Yamagami, Tamaki Kinoshita, Yoshinori Yasuda, Shintaro Iwama, Takashi Miyata, Mariko Sugiyama, Hiroshi Takagi, Daisuke Hagiwara, Hidetaka Suga, Ryoichi Banno, Yoshinori Az
    JMIR Diabetes.2024; 9: e48019.     CrossRef
  • The Association of Macronutrient Consumption and BMI to Exhaled Carbon Dioxide in Lumen Users: Retrospective Real-World Study
    Shlomo Yeshurun, Tomer Cramer, Daniel Souroujon, Merav Mor
    JMIR mHealth and uHealth.2024; 12: e56083.     CrossRef
  • Generative adversarial network-based data augmentation for improving hypoglycemia prediction: A proof-of-concept study
    Wonju Seo, Namho Kim, Sung-Woon Park, Sang-Man Jin, Sung-Min Park
    Biomedical Signal Processing and Control.2024; 92: 106077.     CrossRef
  • Pre‐dinner walks may be superior to post‐dinner walks for glucose time in range in adults with type 1 diabetes on hybrid closed‐loop insulin delivery systems
    Lauren V. Turner, Michael C. Riddell
    Diabetes, Obesity and Metabolism.2024; 26(6): 2492.     CrossRef
  • Real-world effectiveness of GLP-1 receptor agonist-based treatment strategies on “time in range” in patients with type 2 diabetes
    Yongru Chen, Jingxian Chen, Shuo Zhang, Dan Zhu, Feiying Deng, Rui Zuo, Yufei Hu, Yue Zhao, Yale Duan, Benwei Lin, Fengwu Chen, Yun Liang, Jiaxiong Zheng, Barkat Ali Khan, Kaijian Hou
    Frontiers in Pharmacology.2024;[Epub]     CrossRef
  • Advancements in nanohybrid material-based acetone gas sensors relevant to diabetes diagnosis: A comprehensive review
    Arpit Verma, Deepankar Yadav, Subramanian Natesan, Monu Gupta, Bal Chandra Yadav, Yogendra Kumar Mishra
    Microchemical Journal.2024; 201: 110713.     CrossRef
  • Utility of Flash Glucose Monitoring to Determine Glucose Variation Induced by Different Doughs in Persons with Type 2 Diabetes
    Maria Antonietta Taras, Sara Cherchi, Ilaria Campesi, Valentina Margarita, Gavino Carboni, Paola Rappelli, Giancarlo Tonolo
    Diabetology.2024; 5(1): 129.     CrossRef
  • Facile chemiresistive biosensor functionalized with PANI/GOx and novel green synthesized silver nanoparticles for glucose sensing
    Jitendra B. Zalke, N.P. Narkhede, Dinesh R. Rotake, Shiv Govind Singh
    Microchemical Journal.2024; 200: 110339.     CrossRef
  • A novel questionnaire for evaluating digital tool use (DTUQ-D) among individuals with type 2 diabetes: exploring the digital landscape
    Ora Peleg, Efrat Hadar, Meyran Boniel-Nissim
    Frontiers in Public Health.2024;[Epub]     CrossRef
  • Continuous glucose monitoring with structured education in adults with type 2 diabetes managed by multiple daily insulin injections: a multicentre randomised controlled trial
    Ji Yoon Kim, Sang-Man Jin, Kang Hee Sim, Bo-Yeon Kim, Jae Hyoung Cho, Jun Sung Moon, Soo Lim, Eun Seok Kang, Cheol-Young Park, Sin Gon Kim, Jae Hyeon Kim
    Diabetologia.2024; 67(7): 1223.     CrossRef
  • Global scientific trends on the islet transplantation in the 21st century: A bibliometric and visualized analysis
    Sheng Chen, PeiZhong Wu, Ting Zhang, Jianqiang Zhang, Hongjun Gao
    Medicine.2024; 103(17): e37945.     CrossRef
  • A method for evaluating the risks of glucose dysregulation in daily life by continuous measurement of glucose excursions under reduced glycemic load: a pilot study
    Yoshitada Katagiri, Hiromi Ozaku, Katsuhiko Kondo
    Frontiers in Sensors.2024;[Epub]     CrossRef
  • The Impact of Missing Continuous Blood Glucose Samples on Machine Learning Models for Predicting Postprandial Hypoglycemia: An Experimental Analysis
    Najib Ur Rehman, Ivan Contreras, Aleix Beneyto, Josep Vehi
    Mathematics.2024; 12(10): 1567.     CrossRef
  • Measures of nutrition status and health for weight‐inclusive patient care: A narrative review
    Kasuen Mauldin, Giselle A. P. Pignotti, John Gieng
    Nutrition in Clinical Practice.2024; 39(4): 751.     CrossRef
  • Long-Term Evaluation of Inserted Nanocomposite Hydrogel-Based Phosphorescent Oxygen Biosensors: Evolution of Local Tissue Oxygen Levels and Foreign Body Response
    David Chimene, Waqas Saleem, Nichole Longbottom, Brian Ko, Ananth Soundaram Jeevarathinam, Staci Horn, Michael J. McShane
    ACS Applied Bio Materials.2024; 7(6): 3964.     CrossRef
  • Comparison of Metabolic Control in Children and Adolescents Treated with Insulin Pumps
    Agnieszka Lejk, Karolina Myśliwiec, Arkadiusz Michalak, Barbara Pernak, Wojciech Fendler, Małgorzata Myśliwiec
    Children.2024; 11(7): 839.     CrossRef
  • Kontinuierliche Glukosemessung bei Menschen mit Typ-2-Diabetes ohne intensivierte Insulintherapie: eine Standortbestimmung
    Jochen Seufert, Ingrid Dänschel, Stefan Gölz, Nicola Haller, Bernhard Kulzer, Susanne Tan, Oliver Schnell, Tobias Wiesner, Jens Kroeger
    Diabetologie und Stoffwechsel.2024;[Epub]     CrossRef
  • The Influence of Nickel Electrode’s Morphology on Glucose Detection
    Hailong Hu, Guohua Ma, Baogang Guo, Xingquan Zhang, Ruishi Xie, Haifeng Liu, Heyan Huang
    Electrocatalysis.2024; 15(5): 374.     CrossRef
  • Insertable Biosensors: Combining Implanted Sensing Materials with Wearable Monitors
    David Chimene, Kirstie M.K. Queener, Brian S. Ko, Mike McShane, Michael Daniele
    Annual Review of Biomedical Engineering .2024; 26(1): 197.     CrossRef
  • Development and Effectiveness of a Pattern Management Educational Program Using Continuous Glucose Monitoring for Type 2 Diabetic Patients in Korea: A Quasi-Experimental Study
    Seung-Yeon Kong, Mi-Kyoung Cho
    Healthcare.2024; 12(14): 1381.     CrossRef
  • Review of Microwave Near-Field Sensing and Imaging Devices in Medical Applications
    Cristina Origlia, David O. Rodriguez-Duarte, Jorge A. Tobon Vasquez, Jean-Charles Bolomey, Francesca Vipiana
    Sensors.2024; 24(14): 4515.     CrossRef
  • Diabetes Management in Transition: Market Insights and Technological Advancements in CGM and Insulin Delivery
    Tae Sang Yu, Soojeong Song, Junwoo Yea, Kyung‐In Jang
    Advanced Sensor Research.2024;[Epub]     CrossRef
  • How to Use Continuous Glucose Monitoring Efficiently in Diabetes Management: Opinions and Recommendations by German Experts on the Status and Open Questions
    Andreas Thomas, Thomas Haak, Astrid Tombek, Bernhard Kulzer, Dominic Ehrmann, Olga Kordonouri, Jens Kröger, Oliver Schubert-Olesen, Ralf Kolassa, Thorsten Siegmund, Nicola Haller, Lutz Heinemann
    Journal of Diabetes Science and Technology.2024;[Epub]     CrossRef
  • Patterned thin film enzyme electrodes via spincoating and glutaraldehyde vapor crosslinking: towards scalable fabrication of integrated sensor-on-CMOS devices
    Dvin Adalian, Xiomi Madero, Samson Chen, Musab Jilani, Richard D. Smith, Songtai Li, Christin Ahlbrecht, Juan Cardenas, Abhinav Agarwal, Azita Emami, Oliver Plettenburg, Peter A. Petillo, Axel Scherer
    Lab on a Chip.2024; 24(17): 4172.     CrossRef
  • Continuous Glucose, Insulin and Lifestyle Data Augmentation in Artificial Pancreas Using Adaptive Generative and Discriminative Models
    Deepjyoti Kalita, Hrishita Sharma, Khalid B. Mirza
    IEEE Journal of Biomedical and Health Informatics.2024; 28(8): 4963.     CrossRef
  • Management of Continuous Glucose Monitors in Radiation Oncology Patients
    Johnathan Zeng, Tara Kosak, Samir Malkani, Julie C. Hudson, Neil E. Martin, Roy B. Tishler, Itai M. Pashtan
    Practical Radiation Oncology.2024;[Epub]     CrossRef
  • Glycemic Outcomes and Nurse Perceptions of Continuous Glucose Monitoring for Hospitalized Patients
    Alexandra Thullen, Rebecca Gerber, Alyson Keen
    Journal of Nursing Care Quality.2024; 39(4): 310.     CrossRef
  • Advances in Type 1 Diabetes Mellitus Management in Children
    Mridu Bahal, Vineeta Pande, Jasleen Dua, Shailaja Mane
    Cureus.2024;[Epub]     CrossRef
  • Time‐in‐range derived from self‐measured blood glucose in people with type 2 diabetes advancing to iGlarLixi: A participant‐level pooled analysis of three phase 3 LixiLan randomized controlled trials
    Martin Haluzík, Mohammed E. Al‐Sofiani, Alice Y. Y. Cheng, Felipe Lauand, Lydie Melas‐Melt, Julio Rosenstock
    Diabetes, Obesity and Metabolism.2024;[Epub]     CrossRef
  • Evaluating the Impact of Continuous Glucose Monitoring on Erectile Dysfunction in Type 1 Diabetes: A Focus on Reducing Glucose Variability and Inflammation
    Nicola Tecce, Davide Menafra, Mattia Proganò, Mario Felice Tecce, Rosario Pivonello, Annamaria Colao
    Healthcare.2024; 12(18): 1823.     CrossRef
  • Development of a Novel Insulin Sensor for Clinical Decision-Making
    Eva Vargas, Eleonora M. Aiello, Jordan E. Pinsker, Hazhir Teymourian, Farshad Tehrani, Mei Mei Church, Lori M. Laffel, Francis J. Doyle, Mary-Elizabeth Patti, Eyal Dassau, Joseph Wang
    Journal of Diabetes Science and Technology.2023; 17(4): 1029.     CrossRef
  • Diabetes technology and sexual health: which role?
    V. Zamponi, J. Haxhi, G. Pugliese, A. Faggiano, R. Mazzilli
    Journal of Endocrinological Investigation.2023; 47(6): 1315.     CrossRef
  • Discordance Between Glycated Hemoglobin A1c and the Glucose Management Indicator in People With Diabetes and Chronic Kidney Disease
    Philippe Oriot, Claire Viry, Antoine Vandelaer, Sébastien Grigioni, Malanie Roy, Jean Christophe Philips, Gaëtan Prévost
    Journal of Diabetes Science and Technology.2023; 17(6): 1553.     CrossRef
  • Expertenaustausch zum Einsatz von kontinuierlichem Glukosemonitoring (CGM) im Diabetesmanagement: Eine aktuelle Bestandsaufnahme und Blick in die Zukunft
    Andreas Thomas, Thomas Haak, Astrid Tombek, Bernhard Kulzer, Dominic Ehrmann, Olga Kordonouri, Jens Kroeger, Oliver Schubert-Olesen, Ralf Kolassa, Thorsten Siegmund, Nicola Haller, Lutz Heinemann
    Diabetologie und Stoffwechsel.2023; 18(01): 57.     CrossRef
  • Evaluation of the performance and usability of a novel continuous glucose monitoring system
    Li Yan, Qiang Li, Qingbo Guan, Mingsong Han, Yu Zhao, Junfei Fang, Jiajun Zhao
    International Journal of Diabetes in Developing Countries.2023; 43(4): 551.     CrossRef
  • Efficacy of intermittent short‐term use of a real‐time continuous glucose monitoring system in non‐insulin–treated patients with type 2 diabetes: A randomized controlled trial
    Sun Joon Moon, Kyung‐Soo Kim, Woo Je Lee, Mi Yeon Lee, Robert Vigersky, Cheol‐Young Park
    Diabetes, Obesity and Metabolism.2023; 25(1): 110.     CrossRef
  • Intermittent-scanned continuous glucose monitoring with low glucose alarms decreases hypoglycemia incidence in middle-aged adults with type 1 diabetes in real-life setting
    Philippe Oriot, Michel P. Hermans
    Journal of Diabetes and its Complications.2023; 37(2): 108385.     CrossRef
  • Applications of Microwaves in Medicine
    J.-C. Chiao, Changzhi Li, Jenshan Lin, Robert H. Caverly, James C. M. Hwang, Harel Rosen, Arye Rosen
    IEEE Journal of Microwaves.2023; 3(1): 134.     CrossRef
  • A Double-Needle Gold-Silver Electrodes Continuous Glucose Monitoring Device
    C. Ben Ali Hassine, A. Tekin
    IRBM.2023; 44(3): 100752.     CrossRef
  • Accuracy of Flash Glucose Monitoring in Hemodialysis Patients With and Without Diabetes Mellitus
    Michèle R. Weber, Matthias Diebold, Peter Wiesli, Andreas D. Kistler
    Experimental and Clinical Endocrinology & Diabetes.2023; 131(03): 132.     CrossRef
  • Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective
    Yuanyuan Zou, Zhengkang Chu, Jiuchuan Guo, Shan Liu, Xing Ma, Jinhong Guo
    Biosensors and Bioelectronics.2023; 225: 115103.     CrossRef
  • Continuous Glucose Monitoring in Enterally Fed Children with Severe Central Nervous System Impairment
    Marlena Górska, Joanna Kudzin, Anna Borkowska, Agnieszka Szlagatys-Sidorkiewicz, Agnieszka Szadkowska, Małgorzata Myśliwiec, Ewa Toporowska-Kowalska
    Nutrients.2023; 15(3): 513.     CrossRef
  • Prevalence of type 2 diabetes complications and its association with diet knowledge and skills and self‐care barriers in Tabriz, Iran: A cross‐sectional study
    Habib Jalilian, Elnaz Javanshir, Leila Torkzadeh, Saeedeh Fehresti, Nazanin Mir, Majid Heidari‐Jamebozorgi, Somayeh Heydari
    Health Science Reports.2023;[Epub]     CrossRef
  • Status of continuous glucose monitoring use and management in tertiary hospitals of China: a cross-sectional study
    Liping Chen, Xiaoqin Liu, Qin Lin, Hongmei Dai, Yong Zhao, Zumin Shi, Liping Wu
    BMJ Open.2023; 13(2): e066801.     CrossRef
  • Diboronic-Acid-Based Electrochemical Sensor for Enzyme-Free Selective and Sensitive Glucose Detection
    Joong-Hyun Kim, Hongsik Choi, Chul-Soon Park, Heung-Seop Yim, Dongguk Kim, Sungmin Lee, Yeonkeong Lee
    Biosensors.2023; 13(2): 248.     CrossRef
  • Artificial intelligence biosensors for continuous glucose monitoring
    Xiaofeng Jin, Andrew Cai, Tailin Xu, Xueji Zhang
    Interdisciplinary Materials.2023; 2(2): 290.     CrossRef
  • Continuous Glucose Monitoring in Dogs and Cats
    Francesca Del Baldo, Federico Fracassi
    Veterinary Clinics of North America: Small Animal Practice.2023; 53(3): 591.     CrossRef
  • Accurate Post-Calibration Predictions for Noninvasive Glucose Measurements in People Using Confocal Raman Spectroscopy
    Anders Pors, Kaspar G. Rasmussen, Rune Inglev, Nina Jendrike, Amalie Philipps, Ajenthen G. Ranjan, Vibe Vestergaard, Jan E. Henriksen, Kirsten Nørgaard, Guido Freckmann, Karl D. Hepp, Michael C. Gerstenberg, Anders Weber
    ACS Sensors.2023; 8(3): 1272.     CrossRef
  • Diabetes mellitus in der Akut- und Notfallmedizin
    Leo Benning, Julian Krehl, Felix Patricius Hans
    Notfallmedizin up2date.2023; 18(01): 45.     CrossRef
  • Empowering People with Diabetes: Role of Continuous Glucose Monitor Systems
    Sneha B Srivastava
    American Journal of Lifestyle Medicine.2023; 17(3): 359.     CrossRef
  • Diabétologie connectée : quelles sont les attentes des médecins et des patients ?
    Nicolas Naïditch, Jean-Pierre Riveline
    Médecine des Maladies Métaboliques.2023; 17(2): 2S3.     CrossRef
  • Association of Vibrotactile Biofeedback With Reduced Ergonomic Risk for Surgeons During Tonsillectomy
    Natalie A. Kelly, Abdulrahman Althubaiti, Aashika D. Katapadi, Adam G. Smith, Sarah C. Nyirjesy, Jane H. Yu, Amanda J. Onwuka, Tendy Chiang
    JAMA Otolaryngology–Head & Neck Surgery.2023; 149(5): 397.     CrossRef
  • The Evolution of Diabetes Technology – Options Toward Personalized Care
    Maleeha Zahid, Samaneh Dowlatshahi, Abhishek H. Kansara, Archana R. Sadhu
    Endocrine Practice.2023; 29(8): 653.     CrossRef
  • A Personalized and Adaptive Insulin Bolus Calculator Based on Double Deep Q- Learning to Improve Type 1 Diabetes Management
    Giulia Noaro, Taiyu Zhu, Giacomo Cappon, Andrea Facchinetti, Pantelis Georgiou
    IEEE Journal of Biomedical and Health Informatics.2023; 27(5): 2536.     CrossRef
  • Celebrating a Century of Insulin Discovery: A Critical Appraisal of the Emerging Alternative Insulin Delivery Systems
    Ntethelelo Sibiya, Bonisiwe Mbatha, Phikelelani Ngubane, Andile Khathi
    Current Drug Delivery.2023; 20(6): 656.     CrossRef
  • Machine Learning–Based Time in Patterns for Blood Glucose Fluctuation Pattern Recognition in Type 1 Diabetes Management: Development and Validation Study
    Nicholas Berin Chan, Weizi Li, Theingi Aung, Eghosa Bazuaye, Rosa M Montero
    JMIR AI.2023; 2: e45450.     CrossRef
  • Drug Delivery Systems for Personal Healthcare by Smart Wearable Patch System
    Bikram Khadka, Byeongmoon Lee, Ki-Taek Kim
    Biomolecules.2023; 13(6): 929.     CrossRef
  • Wearable Electrochemical Glucose Sensors in Diabetes Management: A Comprehensive Review
    Tamoghna Saha, Rafael Del Caño, Kuldeep Mahato, Ernesto De la Paz, Chuanrui Chen, Shichao Ding, Lu Yin, Joseph Wang
    Chemical Reviews.2023; 123(12): 7854.     CrossRef
  • Real-life 24-week changes in glycemic parameters among European users of flash glucose monitoring with type 1 and 2 diabetes and different levels of glycemic control
    Annel Lameijer, Julia J. Bakker, Kalvin Kao, Yongjin Xu, Rijk O.B. Gans, Henk J.G. Bilo, Timothy C. Dunn, Peter R. van Dijk
    Diabetes Research and Clinical Practice.2023; 201: 110735.     CrossRef
  • Les médicaments anti-diabétiques : ce que le médecin anesthésiste réanimateur doit savoir
    Michael Joubert
    Anesthésie & Réanimation.2023; 9(3): 251.     CrossRef
  • Glycemia control using remote technologies
    L. A. Suplotova, O. O. Alieva
    Meditsinskiy sovet = Medical Council.2023; 17(9): 81.     CrossRef
  • Data-enabled learning and control algorithms for intelligent glucose management: The state of the art
    Deheng Cai, Wenjing Wu, Marzia Cescon, Wei Liu, Linong Ji, Dawei Shi
    Annual Reviews in Control.2023; 56: 100897.     CrossRef
  • A Markov Model of Gap Occurrence in Continuous Glucose Monitoring Data for Realistic in Silico Clinical Trials
    Martina Vettoretti, Martina Drecogna, Simone Del Favero, Andrea Facchinetti, Giovanni Sparacino
    Computer Methods and Programs in Biomedicine.2023; 240: 107700.     CrossRef
  • Volumetric Electron Transfer from Metabolites to Chemically Doped Polymer Electrodes
    Siew Ting Melissa Tan, Gijun Lee, Kalee Rozylowicz, Adam Marks, Alberto Salleo
    Advanced Functional Materials.2023;[Epub]     CrossRef
  • Diabetes and hypertension MobileHealth systems: a review of general challenges and advancements
    Bliss Utibe-Abasi Stephen, Benedicta C. Uzoewulu, Phillip Michael Asuquo, Simeon Ozuomba
    Journal of Engineering and Applied Science.2023;[Epub]     CrossRef
  • THE ASSESSMENT OF COMPENSATION OF CARBOHYDRATE METABOLISM IN PATIENTS WITH TYPE 2 DIABETES MELLITUS WITH METABOLIC SYNDROME BEYOND THE LIMITS OF GLYCATED HEMOGLOBIN
    Taras V. Romaniv, Nadiya V. Skrypnyk, Ulyana V. Synko, Nataliia M. Voronych-Semchenko, Oleh V. Melnyk, Anna O. Hryb, Igor B. Boruchok
    Wiadomości Lekarskie.2023; 76(6): 1385.     CrossRef
  • Pros and cons of continous glucose monitoring
    Marcin Ciechański, Edyta Witkowska, Agnieszka Ostańska, Adrianna Szafran, Klaudia Wiśniewska, Laura Piasek, Grzegorz Godek, Kacper Więcław, Katarzyna Stańko, Wiktor Terelak
    Journal of Medical Science.2023;[Epub]     CrossRef
  • Continuous Glucose Monitoring by Insulin-Treated Pilots Flying Commercial Aircraft Within the ARA.MED.330 Diabetes Protocol: A Preliminary Feasibility Study
    Gillian L. Garden, Fariba Shojaee-Moradie, Ewan J. Hutchison, Brian M. Frier, Kenneth M. Shaw, Simon R. Heller, Gerd Koehler, Julia K. Mader, Declan Maher, Graham A. Roberts, David L. Russell-Jones
    Diabetes Technology & Therapeutics.2023; 25(8): 543.     CrossRef
  • Importance of continuous glucose monitoring in the treatment of diabetes mellitus
    Sun Joon Moon, Won-Young Lee
    Journal of the Korean Medical Association.2023; 66(7): 432.     CrossRef
  • DiaTrend: A dataset from advanced diabetes technology to enable development of novel analytic solutions
    Temiloluwa Prioleau, Abigail Bartolome, Richard Comi, Catherine Stanger
    Scientific Data.2023;[Epub]     CrossRef
  • Testing the Real-World Accuracy of the Dexcom G6 Pro CGM During the Insulin-Only Bionic Pancreas Pivotal Trial
    Martin Chase Marak, Peter Calhoun, Edward R. Damiano, Steven J. Russell, Katrina J. Ruedy, Roy W. Beck
    Diabetes Technology & Therapeutics.2023; 25(11): 817.     CrossRef
  • Use of continuous glucose monitoring in pediatric gastroenterology allows for personalized nutrition support care – Potential for collaboration between pediatric endocrinologists and gastroenterologists
    Kathryn Hitchcock, Stephanie Oliveira
    Journal of Pediatric Endocrinology and Diabetes.2023; 3: 34.     CrossRef
  • Anti-biofouling strategies for implantable biosensors of continuous glucose monitoring systems
    Yan Zheng, Dunyun Shi, Zheng Wang
    Frontiers of Chemical Science and Engineering.2023; 17(12): 1866.     CrossRef
  • A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices
    Quanfang Wang, Sihan Li, Jiaojiao Chen, Luting Yang, Yulan Qiu, Qian Du, Chuhui Wang, Mengmeng Teng, Taotao Wang, Yalin Dong
    Journal of Antimicrobial Chemotherapy.2023; 78(11): 2612.     CrossRef
  • Hypoglycemic Effect of an Herbal Decoction (Modified Gangsimtang) in a Patient with Severe Type 2 Diabetes Mellitus Refusing Oral Anti-Diabetic Medication: A Case Report
    Sungjun Joo, Hyonjun Chun, Jisu Lee, Seungmin Seo, Jungmin Lee, Jungtae Leem
    Medicina.2023; 59(11): 1919.     CrossRef
  • GluGAN: Generating Personalized Glucose Time Series Using Generative Adversarial Networks
    Taiyu Zhu, Kezhi Li, Pau Herrero, Pantelis Georgiou
    IEEE Journal of Biomedical and Health Informatics.2023; 27(10): 5122.     CrossRef
  • Millifluidic valves and pumps made of tape and plastic
    Josue U. Amador-Hernandez, Pablo E. Guevara-Pantoja, Diana F. Cedillo-Alcantar, Gabriel A. Caballero-Robledo, Jose L. Garcia-Cordero
    Lab on a Chip.2023; 23(20): 4579.     CrossRef
  • Continuous glucose monitoring metrics following sub-Tenon’s injection of triamcinolone acetonide for diabetic macular edema
    Rei Sotani-Ogawa, Sentaro Kusuhara, Yushi Hirota, Kyung Woo Kim, Wataru Matsumiya, Wataru Ogawa, Makoto Nakamura
    Graefe's Archive for Clinical and Experimental Ophthalmology.2023;[Epub]     CrossRef
  • Offline Deep Reinforcement Learning and Off-Policy Evaluation for Personalized Basal Insulin Control in Type 1 Diabetes
    Taiyu Zhu, Kezhi Li, Pantelis Georgiou
    IEEE Journal of Biomedical and Health Informatics.2023; 27(10): 5087.     CrossRef
  • Flash Glucose Monitoring in Croatia: The Optimal Number of Scans per Day to Achieve Good Glycemic Control in Type 1 Diabetes
    Silvija Canecki-Varzic, Ivana Prpic-Krizevac, Maja Cigrovski Berkovic, Dario Rahelic, Ema Schonberger, Marina Gradiser, Ines Bilic-Curcic
    Medicina.2023; 59(11): 1893.     CrossRef
  • The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP
    Francesco Prendin, Jacopo Pavan, Giacomo Cappon, Simone Del Favero, Giovanni Sparacino, Andrea Facchinetti
    Scientific Reports.2023;[Epub]     CrossRef
  • SHMAD: A Smart Health Care System to Monitor Alzheimer’s Disease Patients
    Shabana R. Ziyad, May Altulyan, Meshal Alharbi
    Journal of Alzheimer's Disease.2023; 95(4): 1545.     CrossRef
  • Séquelles fonctionnelles après résection pancréatique carcinologique. Un sujet d’actualité pour les patients et les praticiens
    Andrea Mulliri, Michael Joubert, Marie-Astrid Piquet, Arnaud Alves, Benoît Dupont
    Journal de Chirurgie Viscérale.2023; 160(6): 470.     CrossRef
  • Functional sequelae after pancreatic resection for cancer
    Andrea Mulliri, Michael Joubert, Marie-Astrid Piquet, Arnaud Alves, Benoît Dupont
    Journal of Visceral Surgery.2023; 160(6): 427.     CrossRef
  • Characteristics of glucose change in diabetes mellitus generalized through continuous wavelet transform processing: A preliminary study
    Yoichi Nakamura, Shinya Furukawa
    World Journal of Diabetes.2023; 14(10): 1562.     CrossRef
  • Evaluating passive physiological data collection during Spravato treatment
    Todd M. Solomon, Matus Hajduk, Martin Majernik, Jamileh Jemison, Alexander Deschamps, Jenna Scoggins, Adam Kolar, Miguel Amável Pinheiro, Peter Dubec, Ondrej Skala, Owen Muir, Amanda Tinkelman, Daniel R. Karlin, Robert Barrow
    Frontiers in Digital Health.2023;[Epub]     CrossRef
  • Fabrication of conductive Ag/AgCl/Ag nanorods ink on Laser-induced graphene electrodes on flexible substrates for non-enzymatic glucose detection
    Rana Bagheri, Saeid Alikhani, Ebrahim Miri-Moghaddam
    Scientific Reports.2023;[Epub]     CrossRef
  • Co-design of Human-centered, Explainable AI for Clinical Decision Support
    Cecilia Panigutti, Andrea Beretta, Daniele Fadda, Fosca Giannotti, Dino Pedreschi, Alan Perotti, Salvatore Rinzivillo
    ACM Transactions on Interactive Intelligent Systems.2023; 13(4): 1.     CrossRef
  • Analysis of blood glucose monitoring – a review on recent advancements and future prospects
    Gayathri Priyadarshini R, Sathiya Narayanan
    Multimedia Tools and Applications.2023; 83(20): 58375.     CrossRef
  • Overview of modern sensors for continuous glucose monitoring
    K. T. Momynaliev, M. V. Prokopiev, I. V. Ivanov
    Diabetes mellitus.2023; 26(6): 575.     CrossRef
  • A Prospective Multicenter Clinical Performance Evaluation of the C-CGM System
    Mihailo Rebec, Kevin Cai, Ralph Dutt-Ballerstadt, Ellen Anderson
    Journal of Diabetes Science and Technology.2022; 16(2): 390.     CrossRef
  • Perceived Burdens and Benefits Associated With Continuous Glucose Monitor Use in Type 1 Diabetes Across the Lifespan
    Vidita Divan, Margaret Greenfield, Christopher P. Morley, Ruth S. Weinstock
    Journal of Diabetes Science and Technology.2022; 16(1): 88.     CrossRef
  • Technologies for Diabetes Self-Monitoring: A Scoping Review and Assessment Using the REASSURED Criteria
    Jessica Hanae Zafra-Tanaka, David Beran, Beatrice Vetter, Rangarajan Sampath, Antonio Bernabe-Ortiz
    Journal of Diabetes Science and Technology.2022; 16(4): 962.     CrossRef
  • Temporal Trends for Diabetes Management and Glycemic Control Between 2010 and 2019 in Korean Children and Adolescents with Type 1 Diabetes
    Jaewon Choe, Seung Hyun Won, Yunsoo Choe, Sang Hee Park, Yun Jeong Lee, Jieun Lee, Young Ah Lee, Han Hyuk Lim, Jae-Ho Yoo, Seong Yong Lee, Eun Young Kim, Choong Ho Shin, Jae Hyun Kim
    Diabetes Technology & Therapeutics.2022; 24(3): 201.     CrossRef
  • International comparison of glycaemic control in people with type 1 diabetes: an update and extension
    Regina Prigge, John A. McKnight, Sarah H. Wild, Aveni Haynes, Timothy W. Jones, Elizabeth A. Davis, Birgit Rami‐Merhar, Maria Fritsch, Christine Prchla, Astrid Lavens, Kris Doggen, Suchsia Chao, Ronnie Aronson, Ruth Brown, Else H. Ibfelt, Jannet Svensson,
    Diabetic Medicine.2022;[Epub]     CrossRef
  • Artificial intelligence perspective in the future of endocrine diseases
    Mandana Hasanzad, Hamid Reza Aghaei Meybodi, Negar Sarhangi, Bagher Larijani
    Journal of Diabetes & Metabolic Disorders.2022; 21(1): 971.     CrossRef
  • Telehealth Technologies and Their Benefits to People With Diabetes
    Chinenye O. Usoh, Kristine Kilen, Carolyn Keyes, Crystal Paige Johnson, Joseph A. Aloi
    Diabetes Spectrum.2022; 35(1): 8.     CrossRef
  • Acetylated Trifluoromethyl Diboronic Acid Anthracene with a Large Stokes Shift and Long Excitation Wavelength as a Glucose-Selective Probe
    Hongsik Choi, Inhyeok Song, Chul Soon Park, Heung-seop Yim, Joong Hyun Kim
    Applied Sciences.2022; 12(6): 2782.     CrossRef
  • Suitability of the Unified Theory of Acceptance and Use of Technology 2 Model for Predicting mHealth Acceptance Using Diabetes as an Example: Qualitative Methods Triangulation Study
    Patrik Schretzlmaier, Achim Hecker, Elske Ammenwerth
    JMIR Human Factors.2022; 9(1): e34918.     CrossRef
  • Continuous Glucose Monitoring System Based on Percutaneous Microneedle Array
    Ming-Nan Chien, Yu-Jen Chen, Chin-Han Bai, Jung-Tung Huang
    Micromachines.2022; 13(3): 478.     CrossRef
  • Impact of COVID-19 Lockdown on the Metabolic Control Parameters in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis
    Ifan Ali Wafa, Nando Reza Pratama, Nurizzah Farahiyah Sofia, Elsha Stephanie Anastasia, Tiffany Konstantin, Maharani Ayuputeri Wijaya, M. Rifqi Wiyono, Lilik Djuari, Hermina Novida
    Diabetes & Metabolism Journal.2022; 46(2): 260.     CrossRef
  • Expert Roundtable on Continuous Glucose Monitoring
    Cheryl Rosenfeld, Thomas Blevins, Grazia Aleppo, Gregory Forlenza, Diana Isaacs, Javier Morales, Jane Seley, Jeffrey Unger
    Endocrine Practice.2022; 28(6): 622.     CrossRef
  • Glucose variability and predicted cardiovascular risk after gastrectomy
    Jun Shibamoto, Takeshi Kubota, Takuma Ohashi, Hirotaka Konishi, Atsushi Shiozaki, Hitoshi Fujiwara, Kazuma Okamoto, Eigo Otsuji
    Surgery Today.2022; 52(11): 1634.     CrossRef
  • Efficacy of once-weekly tirzepatide versus once-daily insulin degludec on glycaemic control measured by continuous glucose monitoring in adults with type 2 diabetes (SURPASS-3 CGM): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS
    Tadej Battelino, Richard M Bergenstal, Angel Rodríguez, Laura Fernández Landó, Ross Bray, Zhentao Tong, Katelyn Brown
    The Lancet Diabetes & Endocrinology.2022; 10(6): 407.     CrossRef
  • Towards the Integration of an Islet-Based Biosensor in Closed-Loop Therapies for Patients With Type 1 Diabetes
    Loïc Olçomendy, Louis Cassany, Antoine Pirog, Roberto Franco, Emilie Puginier, Manon Jaffredo, David Gucik-Derigny, Héctor Ríos, Alejandra Ferreira de Loza, Julien Gaitan, Matthieu Raoux, Yannick Bornat, Bogdan Catargi, Jochen Lang, David Henry, Sylvie Re
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Effect of divergent continuous glucose monitoring technologies on glycaemic control in type 1 diabetes mellitus: A systematic review and meta‐analysis of randomised controlled trials
    Mona Elbalshy, Jillian Haszard, Hazel Smith, Sarahmarie Kuroko, Barbara Galland, Nick Oliver, Viral Shah, Martin I. de Bock, Benjamin J. Wheeler
    Diabetic Medicine.2022;[Epub]     CrossRef
  • Novel Glycemic Index Based on Continuous Glucose Monitoring to Predict Poor Clinical Outcomes in Critically Ill Patients: A Pilot Study
    Eun Yeong Ha, Seung Min Chung, Il Rae Park, Yin Young Lee, Eun Young Choi, Jun Sung Moon
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms
    Brian Bogue-Jimenez, Xiaolei Huang, Douglas Powell, Ana Doblas
    Sensors.2022; 22(9): 3534.     CrossRef
  • Generation of post-meal insulin correction boluses in type 1 diabetes simulation models for in-silico clinical trials: More realistic scenarios obtained using a decision tree approach
    N. Camerlingo, M. Vettoretti, S. Del Favero, A. Facchinetti, P. Choudhary, G. Sparacino
    Computer Methods and Programs in Biomedicine.2022; 221: 106862.     CrossRef
  • A Miniaturized Optofluidic Glucose Monitoring System Based on Enzyme Colorimetry
    Qingmei Xu, Chongwei Zou, Chengtao Sun, Xingguo Zhang, Haixia Yu, Dachao Li
    IEEE Sensors Journal.2022; 22(10): 9246.     CrossRef
  • Use and Trends of Diabetes Self-Management Technologies: A Correlation-Based Study
    Jesús Fontecha, Iván González, Alfonso Barragán, Theodore Lim, Dario Pitocco
    Journal of Diabetes Research.2022; 2022: 1.     CrossRef
  • Nanotechnology in Diabetes Mellitus: Overview for Nurses
    R Priya, Baba Vajrala
    Pondicherry Journal of Nursing.2022; 15(1): 22.     CrossRef
  • Effect of Different Glucose Monitoring Methods on Bold Glucose Control: A Systematic Review and Meta-Analysis
    Yeling Wang, Congcong Zou, Han Na, Weixin Zeng, Xiaoyan Li, Xi Lou
    Computational and Mathematical Methods in Medicine.2022; 2022: 1.     CrossRef
  • Noninvasive Blood Glucose Monitoring Systems Using Near-Infrared Technology—A Review
    Aminah Hina, Wala Saadeh
    Sensors.2022; 22(13): 4855.     CrossRef
  • Performance of islets of Langerhans conformally coated via an emulsion cross-linking method in diabetic rodents and nonhuman primates
    Aaron A. Stock, Grisell C. Gonzalez, Sophia I. Pete, Teresa De Toni, Dora M. Berman, Alexander Rabassa, Waldo Diaz, James C. Geary, Melissa Willman, Joy M. Jackson, Noa H. DeHaseth, Noel M. Ziebarth, Anthony R. Hogan, Camillo Ricordi, Norma S. Kenyon, Ali
    Science Advances.2022;[Epub]     CrossRef
  • Review—Electrochemistry and Other Emerging Technologies for Continuous Glucose Monitoring Devices
    Saroj Kumar Das, Kavya K. Nayak, P. R. Krishnaswamy, Vinay Kumar, Navakanta Bhat
    ECS Sensors Plus.2022; 1(3): 031601.     CrossRef
  • Design Strategies and Prospects in Developing Wearable Glucose Monitoring System Using Printable Organic Transistor and Microneedle: A Review
    Fazliyatul Azwa Md Rezali, Norhayati Soin, Sharifah Fatmadiana Wan Muhamad Hatta, Mohamad Hazwan Mohd Daut, Muhammad Hafizuddin Al-Helmy Nouxman, Hanim Hussin
    IEEE Sensors Journal.2022; 22(14): 13785.     CrossRef
  • Review of Automated Insulin Delivery Systems for Type 1 Diabetes and Associated Time in Range Outcomes
    Armaan Nallicheri, Katherine M Mahoney, Hanna A Gutow, Natalie Bellini, Diana Isaacs
    Endocrinology.2022; 18(1): 27.     CrossRef
  • Evaluation of Mesoporous TiO2 Layers as Glucose Optical Sensors
    David Ortiz de Zárate, Sara Serna, Salvador Ponce-Alcántara, Jaime García-Rupérez
    Sensors.2022; 22(14): 5398.     CrossRef
  • A Prospective Study on Continuous Glucose Monitoring in Glycogen Storage Disease Type Ia: Toward Glycemic Targets
    Alessandro Rossi, Annieke Venema, Petra Haarsma, Lude Feldbrugge, Rob Burghard, David Rodriguez-Buritica, Giancarlo Parenti, Maaike H Oosterveer, Terry G J Derks
    The Journal of Clinical Endocrinology & Metabolism.2022; 107(9): e3612.     CrossRef
  • Continuous glucose monitoring as a close to real life alternative to meal studies – a pilot study with a functional drink containing amino acids and chromium
    Azat Samigullin, Per M. Humpert, Elin Östman
    Frontiers in Medical Technology.2022;[Epub]     CrossRef
  • An overview of recent advances in insulin delivery and wearable technology for effective management of diabetes
    Sujeet Kumar Raj, M. Ravindra Babu, Sukriti Vishwas, M.V.N.L. Chaitanya, Vancha Harish, Gaurav Gupta, Dinesh Kumar Chellappan, Kamal Dua, Sachin Kumar Singh
    Journal of Drug Delivery Science and Technology.2022; 75: 103728.     CrossRef
  • Medical Certification of Pilots Through the Insulin-Treated Diabetes Mellitus Protocol at the FAA
    Lynn K. Stanwyck, James R. DeVoll, Joyce Pastore, Zykevise Gamble, Anna Poe, Gabrielle V. Gui
    Aerospace Medicine and Human Performance.2022; 93(8): 627.     CrossRef
  • Rate of glycaemic control and associated factors in patients with type 2 diabetes mellitus treated with insulin-based therapy at selected hospitals in Northwest Ethiopia: a multicentre cross-sectional study
    Ashenafi Kibret Sendekie, Eyayaw Ashete Belachew, Ephrem Mebratu Dagnew, Adeladlew Kassie Netere
    BMJ Open.2022; 12(9): e065250.     CrossRef
  • Glucose Profiles Assessed by Intermittently Scanned Continuous Glucose Monitoring System during the Perioperative Period of Metabolic Surgery
    Kyuho Kim, Sung Hee Choi, Hak Chul Jang, Young Suk Park, Tae Jung Oh
    Diabetes & Metabolism Journal.2022; 46(5): 713.     CrossRef
  • Hypoglycemic events and glycemic control effects between NPH and premixed insulin in patients with type 2 diabetes mellitus: A real-world experience at a comprehensive specialized hospital in Ethiopia
    Ashenafi Kibret Sendekie, Adeladlew Kassie Netere, Eyayaw Ashete Belachew, Rekha Samuel
    PLOS ONE.2022; 17(9): e0275032.     CrossRef
  • Continuous Glucose Monitoring for the Diagnosis of Gestational Diabetes Mellitus: A Pilot Study
    Daria Di Filippo, Marrwah Ahmadzai, Melissa Han Yiin Chang, Ksana Horgan, Ru Min Ong, Justine Darling, Mahmood Akhtar, Amanda Henry, Alec Welsh, Daniela Foti
    Journal of Diabetes Research.2022; 2022: 1.     CrossRef
  • Caring for people with diabetes
    Martha M. Funnell, Katherine A. Kloss, Robin B. Nwankwo
    Nursing.2022; 52(11): 26.     CrossRef
  • Tackling the challenges of developing microneedle-based electrochemical sensors
    Hilmee Abdullah, Tonghathai Phairatana, Itthipon Jeerapan
    Microchimica Acta.2022;[Epub]     CrossRef
  • A Concise and Systematic Review on Non-Invasive Glucose Monitoring for Potential Diabetes Management
    Soumyasanta Laha, Aditi Rajput, Suvra S. Laha, Rohan Jadhav
    Biosensors.2022; 12(11): 965.     CrossRef
  • Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions
    Francesco Prendin, José-Luis Díez, Simone Del Favero, Giovanni Sparacino, Andrea Facchinetti, Jorge Bondia
    Sensors.2022; 22(22): 8682.     CrossRef
  • Wearable Sensor-Based Monitoring of Environmental Exposures and the Associated Health Effects: A Review
    Xueer Lin, Jiaying Luo, Minyan Liao, Yalan Su, Mo Lv, Qing Li, Shenglan Xiao, Jianbang Xiang
    Biosensors.2022; 12(12): 1131.     CrossRef
  • Acceptability and feasibility of continuous glucose monitoring in people with diabetes: protocol for a mixed-methods systematic review of quantitative and qualitative evidence
    Jennifer V. E. Brown, Ramzi Ajjan, Najma Siddiqi, Peter A. Coventry
    Systematic Reviews.2022;[Epub]     CrossRef
  • Utilization of Personalized Machine-Learning to Screen for Dysglycemia from Ambulatory ECG, toward Noninvasive Blood Glucose Monitoring
    I-Min Chiu, Chi-Yung Cheng, Po-Kai Chang, Chao-Jui Li, Fu-Jen Cheng, Chun-Hung Richard Lin
    Biosensors.2022; 13(1): 23.     CrossRef
  • Effect of Hydroxychloroquine on Glycemic Variability in Type 2 Diabetes Patients Uncontrolled on Glimepiride and Metformin Therapy
    Rajesh Rajput, Suyasha Saini, Siddhant Rajput, Parankush Upadhyay
    Indian Journal of Endocrinology and Metabolism.2022; 26(6): 537.     CrossRef
  • GESTATIONAL DIABETES MELLITUS: MODERN GLYCEMIA MONITORING SYSTEMS
    YU.A. DUDAREVA, V.A. GURYEVA, G.V. NEMTSEVA
    AVICENNA BULLETIN.2022; 24(1): 97.     CrossRef
  • Extraction With Sweat-Sebum Emulsion as a New Test Method for Leachables in Patch-Based Medical Devices, Illustrated by Assessment of Isobornylacrylate (IBOA) in Diabetes Products
    Herbert Fink, Nuno M. de Barros Fernandes, Jörg Weissmann, Manfred Frey
    Journal of Diabetes Science and Technology.2021; 15(4): 792.     CrossRef
  • Mathematical Models of Meal Amount and Timing Variability With Implementation in the Type-1 Diabetes Patient Decision Simulator
    Nunzio Camerlingo, Martina Vettoretti, Simone Del Favero, Andrea Facchinetti, Giovanni Sparacino
    Journal of Diabetes Science and Technology.2021; 15(2): 346.     CrossRef
  • Fit‐for‐Purpose Biometric Monitoring Technologies: Leveraging the Laboratory Biomarker Experience
    Alan Godfrey, Benjamin Vandendriessche, Jessie P. Bakker, Cheryl Fitzer‐Attas, Ninad Gujar, Matthew Hobbs, Qi Liu, Carrie A. Northcott, Virginia Parks, William A. Wood, Vadim Zipunnikov, John A. Wagner, Elena S. Izmailova
    Clinical and Translational Science.2021; 14(1): 62.     CrossRef
  • Self-charging wearables for continuous health monitoring
    Jiyong Kim, Salman Khan, Peng Wu, Sungjin Park, Hwanjoo Park, Choongho Yu, Woochul Kim
    Nano Energy.2021; 79: 105419.     CrossRef
  • Impact of Switching from Intermittently Scanned to Real-Time Continuous Glucose Monitoring Systems in a Type 1 Diabetes Patient French Cohort: An Observational Study of Clinical Practices
    Yannis Préau, Martine Armand, Sébastien Galie, Pauline Schaepelynck, Denis Raccah
    Diabetes Technology & Therapeutics.2021; 23(4): 259.     CrossRef
  • Individualizing Time-in-Range Goals in Management of Diabetes Mellitus and Role of Insulin: Clinical Insights From a Multinational Panel
    Sanjay Kalra, Shehla Shaikh, Gagan Priya, Manas P. Baruah, Abhyudaya Verma, Ashok K. Das, Mona Shah, Sambit Das, Deepak Khandelwal, Debmalya Sanyal, Sujoy Ghosh, Banshi Saboo, Ganapathi Bantwal, Usha Ayyagari, Daphne Gardner, Cecilia Jimeno, Nancy E. Barb
    Diabetes Therapy.2021; 12(2): 465.     CrossRef
  • Machine-Learning Based Model to Improve Insulin Bolus Calculation in Type 1 Diabetes Therapy
    Giulia Noaro, Giacomo Cappon, Martina Vettoretti, Giovanni Sparacino, Simone Del Favero, Andrea Facchinetti
    IEEE Transactions on Biomedical Engineering.2021; 68(1): 247.     CrossRef
  • Efficacy of telemedicine for persons with type 1 diabetes during Covid19 lockdown
    Federico Boscari, Sara Ferretto, Ambra Uliana, Angelo Avogaro, Daniela Bruttomesso
    Nutrition & Diabetes.2021;[Epub]     CrossRef
  • Technological innovation of Continuous Glucose Monitoring (CGM) as a tool for commercial aviation pilots with insulin-treated diabetes and stakeholders/regulators: A new chance to improve the directives?
    F. Strollo, A. Furia, P. Verde, A. Bellia, M. Grussu, A. Mambro, M.D. Petrelli, S. Gentile
    Diabetes Research and Clinical Practice.2021; 172: 108638.     CrossRef
  • Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges
    Omer Mujahid, Ivan Contreras, Josep Vehi
    Sensors.2021; 21(2): 546.     CrossRef
  • Time in range–A1c hemoglobin relationship in continuous glucose monitoring of type 1 diabetes: a real-world study
    Marina Valenzano, Ivan Cibrario Bertolotti, Adriano Valenzano, Giorgio Grassi
    BMJ Open Diabetes Research & Care.2021; 9(1): e001045.     CrossRef
  • Machine learning for the diagnosis of early-stage diabetes using temporal glucose profiles
    Woo Seok Lee, Junghyo Jo, Taegeun Song
    Journal of the Korean Physical Society.2021; 78(5): 373.     CrossRef
  • Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only
    Francesco Prendin, Simone Del Favero, Martina Vettoretti, Giovanni Sparacino, Andrea Facchinetti
    Sensors.2021; 21(5): 1647.     CrossRef
  • A “Slide Rule” to Adjust Insulin Dose Using Trend Arrows in Adults with Type 1 Diabetes: Test in Silico and in Real Life
    Daniela Bruttomesso, Federico Boscari, Giuseppe Lepore, Giulia Noaro, Giacomo Cappon, Angela Girelli, Lutgarda Bozzetto, Andrea Tumminia, Giorgio Grassi, Giovanni Sparacino, Luigi Laviola, Andrea Facchinetti
    Diabetes Therapy.2021; 12(5): 1313.     CrossRef
  • Glycemic variability and cardiovascular disease in patients with type 2 diabetes
    Marcela Martinez, Jimena Santamarina, Adrian Pavesi, Carla Musso, Guillermo E Umpierrez
    BMJ Open Diabetes Research & Care.2021; 9(1): e002032.     CrossRef
  • Hypoglycaemia detection and prediction techniques: A systematic review on the latest developments
    Omar Diouri, Monika Cigler, Martina Vettoretti, Julia K. Mader, Pratik Choudhary, Eric Renard
    Diabetes/Metabolism Research and Reviews.2021;[Epub]     CrossRef
  • Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes
    Özlem Kap, Volkan Kılıç, John G. Hardy, Nesrin Horzum
    The Analyst.2021; 146(9): 2784.     CrossRef
  • The impact of hypoglycaemia on the quality of life of family members of adults with type 1 or type 2 diabetes: A qualitative systematic review
    Mette Valdersdorf Jensen, Melanie Broadley, Jane Speight, Alison Scope, Louise Preston, Simon Heller, Bastiaan E. de Galan, Frans Pouwer, Christel Hendrieckx
    Diabetic Medicine.2021;[Epub]     CrossRef
  • A review of biosensor technology and algorithms for glucose monitoring
    Yaguang Zhang, Jingxue Sun, Liansheng Liu, Hong Qiao
    Journal of Diabetes and its Complications.2021; 35(8): 107929.     CrossRef
  • Optical glucose biosensor built-in disposable strips and wearable electronic devices
    Abdullah Reda, Sherif A. El-Safty, Mahmoud M. Selim, Mohamed A. Shenashen
    Biosensors and Bioelectronics.2021; 185: 113237.     CrossRef
  • Advances, Challenges, and Cost Associated with Continuous Glucose Monitor Use in Adolescents and Young Adults with Type 1 Diabetes
    Karishma A. Datye, Daniel R. Tilden, Angelee M. Parmar, Eveline R. Goethals, Sarah S. Jaser
    Current Diabetes Reports.2021;[Epub]     CrossRef
  • Is HbA1c an ideal biomarker of well-controlled diabetes?
    Georgia Kaiafa, Stavroula Veneti, George Polychronopoulos, Dimitrios Pilalas, Stylianos Daios, Ilias Kanellos, Triantafyllos Didangelos, Stamatina Pagoni, Christos Savopoulos
    Postgraduate Medical Journal.2021; 97(1148): 380.     CrossRef
  • Technology in the management of type 2 diabetes: Present status and future prospects
    Aideen Daly, Roman Hovorka
    Diabetes, Obesity and Metabolism.2021; 23(8): 1722.     CrossRef
  • A Non-Invasive Flexible Glucose Monitoring Sensor Using a Broadband Reject Filter
    Moussa Bteich, Jessica Hanna, Joseph Costantine, Rouwaida Kanj, Youssef Tawk, Ali H. Ramadan, Assaad A. Eid
    IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology.2021; 5(2): 139.     CrossRef
  • Wearable patch delivery system for artificial pancreas health diagnostic-therapeutic application: A review
    Nur Farrahain Nadia Ahmad, Nik Nazri Nik Ghazali, Yew Hoong Wong
    Biosensors and Bioelectronics.2021; 189: 113384.     CrossRef
  • Technological Ecological Momentary Assessment Tools to Study Type 1 Diabetes in Youth: Viewpoint of Methodologies
    Mary Katherine Ray, Alana McMichael, Maria Rivera-Santana, Jacob Noel, Tamara Hershey
    JMIR Diabetes.2021; 6(2): e27027.     CrossRef
  • Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes
    Magdalena M. Samojlik, Cherie L. Stabler
    Acta Biomaterialia.2021; 133: 87.     CrossRef
  • Evaluation of a continuous glucose monitoring system in neonatal foals
    David Wong, Caitlin Malik, Katarzyna Dembek, Krista Estell, Megan Marchitello, Katie Wilson
    Journal of Veterinary Internal Medicine.2021; 35(4): 1995.     CrossRef
  • Flash Glucose Monitoring in the Netherlands: Increased monitoring frequency is associated with improvement of glycemic parameters
    Annel Lameijer, Nicole Lommerde, Timothy C. Dunn, Marion J. Fokkert, Mireille A. Edens, Kalvin Kao, Yongjin Xu, R.O.B. Gans, Henk J.G. Bilo, Peter R. van Dijk
    Diabetes Research and Clinical Practice.2021; 177: 108897.     CrossRef
  • Utilisation, access and recommendations regarding technologies for people living with type 1 diabetes: consensus statement of the ADS/ADEA/APEG/ADIPS Working Group
    Anthony J Pease, Sofianos Andrikopoulos, Mary B Abraham, Maria E Craig, Brett Fenton, Jane Overland, Sarah Price, David Simmons, Glynis P Ross
    Medical Journal of Australia.2021; 215(10): 473.     CrossRef
  • Catalytic effects of magnetic and conductive nanoparticles on immobilized glucose oxidase in skin sensors
    Lilian C Alarcón-Segovia, Amay J Bandodkar, John A Rogers, Ignacio Rintoul
    Nanotechnology.2021; 32(37): 375101.     CrossRef
  • Optical Glucose Sensor Using Pressure Sensitive Paint
    Jongwon Park
    Sensors.2021; 21(13): 4474.     CrossRef
  • Type 1 diabetes glycemic management: Insulin therapy, glucose monitoring, and automation
    Bruce A. Perkins, Jennifer L. Sherr, Chantal Mathieu
    Science.2021; 373(6554): 522.     CrossRef
  • Clinical Utilities of Continuous Glucose Monitoring and Insulin Pumps in Pediatric Patients with Type 1 Diabetes
    Jieun Lee, Jae Hyun Kim
    The Ewha Medical Journal.2021; 44(3): 55.     CrossRef
  • Personalized Postprandial Glucose Response–Targeting Diet Versus Mediterranean Diet for Glycemic Control in Prediabetes
    Orly Ben-Yacov, Anastasia Godneva, Michal Rein, Smadar Shilo, Dmitry Kolobkov, Netta Koren, Noa Cohen Dolev, Tamara Travinsky Shmul, Bat Chen Wolf, Noa Kosower, Keren Sagiv, Maya Lotan-Pompan, Niv Zmora, Adina Weinberger, Eran Elinav, Eran Segal
    Diabetes Care.2021; 44(9): 1980.     CrossRef
  • Lack of Acceptance of Digital Healthcare in the Medical Market: Addressing Old Problems Raised by Various Clinical Professionals and Developing Possible Solutions
    Jong Il Park, Hwa Young Lee, Hyunah Kim, Jisan Lee, Jiwon Shinn, Hun-Sung Kim
    Journal of Korean Medical Science.2021;[Epub]     CrossRef
  • Benefits of a Switch from Intermittently Scanned Continuous Glucose Monitoring (isCGM) to Real-Time (rt) CGM in Diabetes Type 1 Suboptimal Controlled Patients in Real-Life: A One-Year Prospective Study §
    Yannis Préau, Sébastien Galie, Pauline Schaepelynck, Martine Armand, Denis Raccah
    Sensors.2021; 21(18): 6131.     CrossRef
  • A Hybrid Automata Approach for Monitoring the Patient in the Loop in Artificial Pancreas Systems
    Aleix Beneyto, Vicenç Puig, B. Wayne Bequette, Josep Vehi
    Sensors.2021; 21(21): 7117.     CrossRef
  • Editors’ Choice—Review—From Polarography to Electrochemical Biosensors: The 100-Year Quest for Selectivity and Sensitivity
    William R. Heineman, Peter T. Kissinger, Kenneth R. Wehmeyer
    Journal of The Electrochemical Society.2021; 168(11): 116504.     CrossRef
  • Digital health and diabetes: experience from India
    Jothydev Kesavadev, Gopika Krishnan, Viswanathan Mohan
    Therapeutic Advances in Endocrinology and Metabolism.2021; 12: 204201882110546.     CrossRef
  • Current Advances of Artificial Pancreas Systems: A Comprehensive Review of the Clinical Evidence
    Sun Joon Moon, Inha Jung, Cheol-Young Park
    Diabetes & Metabolism Journal.2021; 45(6): 813.     CrossRef
  • Factors Associated with Adherence to Self-Monitoring of Blood Glucose Among Young People with Type 1 Diabetes in China: A Cross-Sectional Study
    Wencong Lv, Jiaxin Luo, Qing Long, Jundi Yang, Xin Wang, Jia Guo
    Patient Preference and Adherence.2021; Volume 15: 2809.     CrossRef
  • Continuous glucose monitoring devices: A brief presentation (Review)
    Doina Mihai, Diana Stefan, Daniela Stegaru, Georgiana Bernea, Ileana Vacaroiu, Toma Papacocea, Mircea Lupușoru, Adriana Nica, Ovidiu Stiru, Dorin Dragos, Octavian Olaru
    Experimental and Therapeutic Medicine.2021;[Epub]     CrossRef
  • Acute glycemic variability on admission predicts the prognosis in hospitalized patients with coronary artery disease: a meta-analysis
    Zhaokun Pu, Lihong Lai, Xishan Yang, Yanyu Wang, Pingshuan Dong, Dan Wang, Yingli Xie, Zesen Han
    Endocrine.2020; 67(3): 526.     CrossRef
  • Glycemic profile of women with normoglycemia and gestational diabetes mellitus during early pregnancy using continuous glucose monitoring system
    Charandeep Singh, Yashdeep Gupta, Alpesh Goyal, Mani Kalaivani, Vineeta Garg, Juhi Bharti, Seema Singhal, Garima Kachhawa, Vidushi Kulshrestha, Rajesh Kumari, Reeta Mahey, Jai B Sharma, Neerja Bhatla, Rajesh Khadgawat, Nandita Gupta, Nikhil Tandon
    Diabetes Research and Clinical Practice.2020; 169: 108409.     CrossRef
  • Efficacy of Intermittently Scanned Continuous Glucose Monitoring in the Prevention of Recurrent Severe Hypoglycemia
    Timothy M.E. Davis, Penny Dwyer, Michelle England, P. Gerry Fegan, Wendy A. Davis
    Diabetes Technology & Therapeutics.2020; 22(5): 367.     CrossRef
  • How was the Diabetes Metabolism Journal added to MEDLINE?
    Hye Jin Yoo
    Science Editing.2020; 7(2): 201.     CrossRef
  • Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens
    Itthipon Jeerapan, Thitaporn Sonsa-ard, Duangjai Nacapricha
    Chemosensors.2020; 8(3): 71.     CrossRef
  • Clinical Opportunities for Continuous Biosensing and Closed-Loop Therapies
    Jason Li, Jia Y. Liang, Steven J. Laken, Robert Langer, Giovanni Traverso
    Trends in Chemistry.2020; 2(4): 319.     CrossRef
  • A single-blind, randomised, crossover study to reduce hypoglycaemia risk during postprandial exercise with closed-loop insulin delivery in adults with type 1 diabetes: announced (with or without bolus reduction) vs unannounced exercise strategies
    Sémah Tagougui, Nadine Taleb, Laurent Legault, Corinne Suppère, Virginie Messier, Inès Boukabous, Azadeh Shohoudi, Martin Ladouceur, Rémi Rabasa-Lhoret
    Diabetologia.2020; 63(11): 2282.     CrossRef
  • Bimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potential
    Lingling Lin, Shaohuang Weng, Yanjie Zheng, Xiyao Liu, Shaoming Ying, Feng Chen, Donghong You
    Journal of Electroanalytical Chemistry.2020; 865: 114147.     CrossRef
  • Type 1 Diabetes in Youth and Technology-Based Advances in Management
    Christopher Ferber, Catherine S. Mao, Jennifer K. Yee
    Advances in Pediatrics.2020; 67: 73.     CrossRef
  • Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors
    Martina Vettoretti, Giacomo Cappon, Andrea Facchinetti, Giovanni Sparacino
    Sensors.2020; 20(14): 3870.     CrossRef
  • Efficacy and safety of evogliptin treatment in patients with type 2 diabetes: A multicentre, active‐controlled, randomized, double‐blind study with open‐label extension (the EVERGREEN study)
    Gyuri Kim, Soo Lim, Hyuk‐Sang Kwon, Ie B. Park, Kyu J. Ahn, Cheol‐Young Park, Su K. Kwon, Hye S. Kim, Seok W. Park, Sin G. Kim, Min K. Moon, Eun S. Kim, Choon H. Chung, Kang S. Park, Mikyung Kim, Dong J. Chung, Chang B. Lee, Tae H. Kim, Moon‐Kyu Lee
    Diabetes, Obesity and Metabolism.2020; 22(9): 1527.     CrossRef
  • Association Between Continuous Glucose Monitoring-Derived Time in Range, Other Core Metrics, and Albuminuria in Type 2 Diabetes
    Jee Hee Yoo, Min Sun Choi, Jiyeon Ahn, Sung Woon Park, Yejin Kim, Kyu Yeon Hur, Sang-Man Jin, Gyuri Kim, Jae Hyeon Kim
    Diabetes Technology & Therapeutics.2020; 22(10): 768.     CrossRef
  • A New Approach to Determining Liquid Concentration Using Multiband Annular Ring Microwave Sensor and Polarity Correlator
    Waleed Sethi, Ahmed Ibrahim, Khaled Issa, Ali Albishi, Saleh Alshebeili
    Electronics.2020; 9(10): 1616.     CrossRef
  • Estrategia terapéutica en el paciente diabético (I). Empoderamiento del paciente y formación. Objetivos terapéuticos. Estilo de vida, alimentación, vacunación y consejos al paciente diabético
    F.B. Rivas Sánchez, J. Sanz Cánovas, J. Martín Carmona, S. Jansen Chaparro
    Medicine - Programa de Formación Médica Continuada Acreditado.2020; 13(17): 943.     CrossRef
  • Current status of continuous glucose monitoring among Korean children and adolescents with type 1 diabetes mellitus
    Jae Hyun Kim
    Annals of Pediatric Endocrinology & Metabolism.2020; 25(3): 145.     CrossRef
  • Towards sensor-based calving detection in the rangelands: a systematic review of credible behavioral and physiological indicators
    Anita Z Chang, David L Swain, Mark G Trotter
    Translational Animal Science.2020;[Epub]     CrossRef
  • Electrochemical glucose sensors in diabetes management: an updated review (2010–2020)
    Hazhir Teymourian, Abbas Barfidokht, Joseph Wang
    Chemical Society Reviews.2020; 49(21): 7671.     CrossRef
  • An analytical approach to determine the optimal duration of continuous glucose monitoring data required to reliably estimate time in hypoglycemia
    Nunzio Camerlingo, Martina Vettoretti, Andrea Facchinetti, Giovanni Sparacino, Julia K. Mader, Pratik Choudhary, Simone Del Favero
    Scientific Reports.2020;[Epub]     CrossRef
  • Smartphone-Based Data Collection in Ophthalmology
    Florian Philipp Raber, Rokas Gerbutavicius, Armin Wolf, Karsten Kortüm
    Klinische Monatsblätter für Augenheilkunde.2020; 237(12): 1420.     CrossRef
  • Glycemic Status Assessment by the Latest Glucose Monitoring Technologies
    Ilaria Malandrucco, Benedetta Russo, Fabiana Picconi, Marika Menduni, Simona Frontoni
    International Journal of Molecular Sciences.2020; 21(21): 8243.     CrossRef
  • Medical Nutrition Therapy Using Continuous Glucose Monitoring System
    Mee Ra Kweon
    The Journal of Korean Diabetes.2020; 21(4): 216.     CrossRef
  • Use of Flash Glucose Monitoring in Patients on Intensive Insulin Treatment
    Jun Sung Moon
    The Journal of Korean Diabetes.2020; 21(4): 184.     CrossRef
  • Data Analysis and Accuracy Evaluation of a Continuous Glucose-Monitoring Device
    Lijun Cai, Wancheng Ge, Zhigang Zhu, Xueling Zhao, Zhanhong Li
    Journal of Sensors.2019; 2019: 1.     CrossRef
  • Development of an Error Model for a Factory-Calibrated Continuous Glucose Monitoring Sensor with 10-Day Lifetime
    Martina Vettoretti, Cristina Battocchio, Giovanni Sparacino, Andrea Facchinetti
    Sensors.2019; 19(23): 5320.     CrossRef
Clinical Care/Education
Article image
2019 Clinical Practice Guidelines for Type 2 Diabetes Mellitus in Korea
Mee Kyoung Kim, Seung-Hyun Ko, Bo-Yeon Kim, Eun Seok Kang, Junghyun Noh, Soo-Kyung Kim, Seok-O Park, Kyu Yeon Hur, Suk Chon, Min Kyong Moon, Nan-Hee Kim, Sang Yong Kim, Sang Youl Rhee, Kang-Woo Lee, Jae Hyeon Kim, Eun-Jung Rhee, SungWan Chun, Sung Hoon Yu, Dae Jung Kim, Hyuk-Sang Kwon, Kyong Soo Park
Diabetes Metab J. 2019;43(4):398-406.   Published online August 20, 2019
DOI: https://doi.org/10.4093/dmj.2019.0137
  • 18,226 View
  • 499 Download
  • 165 Web of Science
  • 172 Crossref
AbstractAbstract PDFPubReader   

The Committee of Clinical Practice Guidelines of the Korean Diabetes Association revised and updated the 6th Clinical Practice Guidelines in 2019. Targets of glycemic, blood pressure, and lipid control in type 2 diabetes mellitus (T2DM) were updated. The obese and overweight population is increasing steadily in Korea, and half of the Koreans with diabetes are obese. Evidence-based recommendations for weight-loss therapy for obesity management as treatment for hyperglycemia in T2DM were provided. In addition, evidence from large clinical studies assessing cardiovascular outcomes following the use of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide 1 receptor agonists in patients with T2DM were incorporated into the recommendations.

Citations

Citations to this article as recorded by  
  • Serum-based ATR-FTIR spectroscopy combined with multivariate analysis for the diagnosis of pre-diabetes and diabetes
    Weiyi Pang, Yu Xing, Camilo L. M. Morais, Qiufeng Lao, Shengle Li, Zipeng Qiao, You Li, Maneesh N. Singh, Valério G. Barauna, Francis L. Martin, Zhiyong Zhang
    The Analyst.2024; 149(2): 497.     CrossRef
  • Fruits and the Risk of Type 2 Diabetes: The Korean Genome and Epidemiology Study Cohort
    Hojun Yu, Cheol Min Lee, Seung-Won Oh
    Korean Journal of Family Medicine.2024; 45(1): 44.     CrossRef
  • Effectiveness and Safety of Sodium-Glucose Cotransporter 2 Inhibitors Added to Dual or Triple Treatment in Patients with Type 2 Diabetes Mellitus
    Yesol Hong, Yoomin Jeon, Yoona Choi, Tae Kyu Chung, Howard Lee
    Diabetes Therapy.2024; 15(2): 487.     CrossRef
  • Risk factors for carotid plaque formation in type 2 diabetes mellitus
    Jin Chen, Wenwen Li, Jingzhu Cao, Yuhan Lu, Chaoqun Wang, Jin Lu
    Journal of Translational Medicine.2024;[Epub]     CrossRef
  • Cumulative exposure to impaired fasting glucose and gastrointestinal cancer risk: A nationwide cohort study
    Byeong Yun Ahn, Bokyung Kim, Sanghyun Park, Sang Gyun Kim, Kyungdo Han, Soo‐Jeong Cho
    Cancer.2024; 130(10): 1807.     CrossRef
  • Effects of a Health Partnership Program Using Mobile Health Application for Male Workers with Cardiovascular Risk Factors in Small and Medium Enterprises: A Randomized Controlled Trial
    Eun Jin Kim, Seon Young Hwang
    Journal of Korean Academy of Nursing.2024; 54(1): 44.     CrossRef
  • The clinical relevance of a polygenic risk score for type 2 diabetes mellitus in the Korean population
    Na Yeon Kim, Haekyung Lee, Sehee Kim, Ye-Jee Kim, Hyunsuk Lee, Junhyeong Lee, Soo Heon Kwak, Seunggeun Lee
    Scientific Reports.2024;[Epub]     CrossRef
  • Real-World Outcomes of Individualized Targeted Therapy with Insulin Glargine 300 Units/mL in Insulin-Naïve Korean People with Type 2 Diabetes: TOBE Study
    Eun-Gyoung Hong, Kyung-Wan Min, Jung Soo Lim, Kyu-Jeung Ahn, Chul Woo Ahn, Jae-Myung Yu, Hye Soon Kim, Hyun Jin Kim, Won Kim, Dong Han Kim, Hak Chul Jang
    Advances in Therapy.2024; 41(5): 1967.     CrossRef
  • The Potential Role of Presepsin in Predicting Severe Infection in Patients with Diabetic Foot Ulcers
    Eun Yeong Ha, Il Rae Park, Seung Min Chung, Young Nam Roh, Chul Hyun Park, Tae-Gon Kim, Woong Kim, Jun Sung Moon
    Journal of Clinical Medicine.2024; 13(8): 2311.     CrossRef
  • Health and Productivity Benefits with Early Intensified Treatment in Patients with Type 2 Diabetes: Results from Korea
    Foteini Tsotra, Ankur Malhotra, Platon Peristeris, Ioannis Athanasiou, Malina Müller, Giovanni Bader
    INQUIRY: The Journal of Health Care Organization, Provision, and Financing.2024;[Epub]     CrossRef
  • Safety of sodium–glucose cotransporter 2 inhibitors in Asian type 2 diabetes populations
    Jaime A Davidson, Norlela Sukor, Fen‐Lee Hew, Mafauzy Mohamed, Zanariah Hussein
    Journal of Diabetes Investigation.2023; 14(2): 167.     CrossRef
  • β-hydroxybutyrate as a biomarker of β-cell function in new-onset type 2 diabetes and its association with treatment response at 6 months
    Minyoung Lee, Yongin Cho, Yong-ho Lee, Eun Seok Kang, Bong-soo Cha, Byung-Wan Lee
    Diabetes & Metabolism.2023; 49(4): 101427.     CrossRef
  • Lipid Management in Korean People With Type 2 Diabetes Mellitus: Korean Diabetes Association and Korean Society of Lipid and Atherosclerosis Consensus Statement
    Ye Seul Yang, Hack-Lyoung Kim, Sang-Hyun Kim, Min Kyong Moon
    Journal of Lipid and Atherosclerosis.2023; 12(1): 12.     CrossRef
  • Lipid Management in Korean People with Type 2 Diabetes Mellitus: Korean Diabetes Association and Korean Society of Lipid and Atherosclerosis Consensus Statement
    Ye Seul Yang, Hack-Lyoung Kim, Sang-Hyun Kim, Min Kyong Moon
    Diabetes & Metabolism Journal.2023; 47(1): 1.     CrossRef
  • Cardiovascular Outcomes according to Comorbidities and Low-Density Lipoprotein Cholesterol in Korean People with Type 2 Diabetes Mellitus
    Min Kyong Moon, Junghyun Noh, Eun-Jung Rhee, Sang Hyun Park, Hyeon Chang Kim, Byung Jin Kim, Hae Jin Kim, Seonghoon Choi, Jin Oh Na, Young Youl Hyun, Bum Joon Kim, Kyung-Do Han, In-Kyung Jeong
    Diabetes & Metabolism Journal.2023; 47(1): 45.     CrossRef
  • Impaired ketogenesis is associated with metabolic-associated fatty liver disease in subjects with type 2 diabetes
    Sejeong Lee, Jaehyun Bae, Doo Ri Jo, Minyoung Lee, Yong-ho Lee, Eun Seok Kang, Bong-Soo Cha, Byung-Wan Lee
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Identifying the Associations of Nightly Fasting Duration and Meal Timing with Type 2 Diabetes Mellitus Using Data from the 2016–2020 Korea National Health and Nutrition Survey
    Junkyung Kwak, Kyeong-A Jang, Haeng-Ran Kim, Min-Sook Kang, Kyung Won Lee, Dayeon Shin
    Nutrients.2023; 15(6): 1385.     CrossRef
  • Development and Adaptability of Smartphone-based Dietary Coaching Program for Patients Undergoing Diabetes and Prediabetes with Continuous Glucose Monitoring Device
    Myoung Soo Kim, Jung Mi Ryu, Minkyeong Kang, Jiwon Park, Yeh Chan Ahn, Yang Seok Kim
    Journal of Health Informatics and Statistics.2023; 48(1): 36.     CrossRef
  • Glucose Control in Korean Patients with Type 2 Diabetes Mellitus according to Body Mass Index
    Ye-lim Shin, Heesoh Yoo, Joo Young Hong, Jooeun Kim, Kyung-do Han, Kyu-Na Lee, Yang-Hyun Kim
    Journal of Obesity & Metabolic Syndrome.2023; 32(1): 55.     CrossRef
  • Diabetes severity is strongly associated with the risk of active tuberculosis in people with type 2 diabetes: a nationwide cohort study with a 6-year follow-up
    Ji Young Kang, Kyungdo Han, Seung-Hwan Lee, Mee Kyoung Kim
    Respiratory Research.2023;[Epub]     CrossRef
  • Developing a Classification Algorithm for Prediabetes Risk Detection From Home Care Nursing Notes
    Eunjoo Jeon, Aeri Kim, Jisoo Lee, Hyunsook Heo, Hana Lee, Kyungmi Woo
    CIN: Computers, Informatics, Nursing.2023; 41(7): 539.     CrossRef
  • Predictive value of the Framingham steatosis index for cardiovascular risk: a nationwide population-based cohort study
    Yun Kyung Cho, Myungjin Kim, Ye-Jee Kim, Chang Hee Jung, Woo Je Lee, Joong-Yeol Park
    Frontiers in Cardiovascular Medicine.2023;[Epub]     CrossRef
  • Association of low muscle strength with metabolic dysfunction-associated fatty liver disease: A nationwide study
    Gyu Bae Lee, Youn Huh, Sang Hyun Lee, Byoungduck Han, Yang-Hyun Kim, Do-Hoon Kim, Seon Mee Kim, Youn Seon Choi, Kyung Hwan Cho, Ga Eun Nam
    World Journal of Gastroenterology.2023; 29(45): 5962.     CrossRef
  • Low fasting glucose‐to‐estimated average glucose ratio was associated with superior response to insulin degludec/aspart compared with basal insulin in patients with type 2 diabetes
    Han Na Jang, Ye Seul Yang, Tae Jung Oh, Bo Kyung Koo, Seong Ok Lee, Kyong Soo Park, Hak Chul Jang, Hye Seung Jung
    Journal of Diabetes Investigation.2022; 13(1): 85.     CrossRef
  • Relationship between the early initiation of insulin treatment and diabetic complications in patients newly diagnosed with type 2 diabetes mellitus in Korea: A nationwide cohort study
    Ha‐Lim Jeon, Won Kim, Bongseong Kim, Ju‐Young Shin
    Journal of Diabetes Investigation.2022; 13(5): 830.     CrossRef
  • Relationship of the Triglyceride-Glucose Index with Subclinical White Matter Hypersensitivities of Presumed Vascular Origin Among Community-Dwelling Koreans
    Dong-Hyuk Jung, Byoungjin Park, Yong-Jae Lee
    International Journal of General Medicine.2022; Volume 15: 603.     CrossRef
  • Prevalence of vitamin B12 deficiency and its association with metformin-treated type 2 diabetic patients: A cross sectional study
    Shaimaa B. Almatrafi, El-Sayed H. Bakr, Asem A. Almatrafi, Manal M. Altayeb
    Human Nutrition & Metabolism.2022; 27: 200138.     CrossRef
  • Retinal Vascular Caliber Changes in Early Type 2 Diabetic Patients without Retinopathy
    Jeong Woo Park, Jeong Hun Bae, Su Jeong Song, Joon Mo Kim
    Journal of the Korean Ophthalmological Society.2022; 63(1): 20.     CrossRef
  • Renal Tubular Damage Marker, Urinary N-acetyl-β-D-Glucosaminidase, as a Predictive Marker of Hepatic Fibrosis in Type 2 Diabetes Mellitus
    Hae Kyung Kim, Minyoung Lee, Yong-ho Lee, Eun Seok Kang, Bong-Soo Cha, Byung-Wan Lee
    Diabetes & Metabolism Journal.2022; 46(1): 104.     CrossRef
  • Efficacy and Safety of Self-Titration Algorithms of Insulin Glargine 300 units/mL in Individuals with Uncontrolled Type 2 Diabetes Mellitus (The Korean TITRATION Study): A Randomized Controlled Trial
    Jae Hyun Bae, Chang Ho Ahn, Ye Seul Yang, Sun Joon Moon, Soo Heon Kwak, Hye Seung Jung, Kyong Soo Park, Young Min Cho
    Diabetes & Metabolism Journal.2022; 46(1): 71.     CrossRef
  • Sodium-Glucose Cotransporter-2 Inhibitor-Related Diabetic Ketoacidosis: Accuracy Verification of Operational Definition
    Dong Yoon Kang, Hyunah Kim, SooJeong Ko, HyungMin Kim, Jiwon Shinn, Min-Gyu Kang, Sun-ju Byeon, Jeong-Hee Choi, Soo-Yong Shin, Hun-Sung Kim
    Journal of Korean Medical Science.2022;[Epub]     CrossRef
  • Relationship between the dynamics of non-alcoholic fatty liver disease and incident diabetes mellitus
    Ji Eun Han, Han-Bit Shin, Young Hwan Ahn, Hyo Jung Cho, Jae Youn Cheong, Bumhee Park, Soon Sun Kim
    Scientific Reports.2022;[Epub]     CrossRef
  • Position of Sulfonylureas in the Current ERA: Review of National and International Guidelines
    Viswanathan Mohan, Banshi Saboo, Jabbar Khader, Kirtikumar D Modi, Sushil Jindal, Subhash Kumar Wangnoo, Sugumaran Amarnath
    Clinical Medicine Insights: Endocrinology and Diabetes.2022; 15: 117955142210746.     CrossRef
  • Real-world comparison of mono and dual combination therapies of metformin, sulfonylurea, and dipeptidyl peptidase-4 inhibitors using a common data model
    Kyung Ae Lee, Heung Yong Jin, Yu Ji Kim, Sang Soo Kim, Eun-Hee Cho, Tae Sun Park
    Medicine.2022; 101(8): e28823.     CrossRef
  • Atherogenic Index of Plasma and Its Association with Risk Factors of Coronary Artery Disease and Nutrient Intake in Korean Adult Men: The 2013–2014 KNHANES
    Hye Ran Shin, SuJin Song, Jin Ah Cho, Sun Yung Ly
    Nutrients.2022; 14(5): 1071.     CrossRef
  • Sodium–glucose cotransporter 2 inhibitors do not increase the risk of fractures in real‐world clinical practice in Korea: A national observational cohort study
    Kyoung Hwa Ha, Dae Jung Kim, Yong Jun Choi
    Journal of Diabetes Investigation.2022; 13(6): 986.     CrossRef
  • Performance of Diabetes and Kidney Disease Screening Scores in Contemporary United States and Korean Populations
    Liela Meng, Keun-Sang Kwon, Dae Jung Kim, Yong-ho Lee, Jeehyoung Kim, Abhijit V. Kshirsagar, Heejung Bang
    Diabetes & Metabolism Journal.2022; 46(2): 273.     CrossRef
  • Integrated metagenomics and metabolomics analysis illustrates the systemic impact of the gut microbiota on host metabolism after bariatric surgery
    Yeyoung Han, Gihyeon Kim, Eunyong Ahn, Sunhee Jung, Youngae Jung, Yunjae Kim, Eunyoung Ha, Yoonseok Heo, Do Hyun Ryu, Hansoo Park, Geum‐Sook Hwang
    Diabetes, Obesity and Metabolism.2022; 24(7): 1224.     CrossRef
  • The use of complex marketing analysis and QSPR methodology for the necessity of a drug development grounding for the treatment of type 2 diabetes mellitus with increased bioavailability
    Inna Kovalevska, Olena Ruban, Alina Volkova, Alla Kotvitska, Alina Cherkashyna
    Pharmacia.2022; 69(2): 303.     CrossRef
  • Comparative Study of Ex Vivo Antiplatelet Activity of Aspirin and Cilostazol in Patients with Diabetes and High Risk of Cardiovascular Disease
    Sangmo Hong, Woo Je Lee, Cheol-Young Park
    Endocrinology and Metabolism.2022; 37(2): 233.     CrossRef
  • Long-term effect of the eradication of Helicobacter pylori on the hemoglobin A1c in type 2 diabetes or prediabetes patients
    Won Seok Kim, Yonghoon Choi, Nayoung Kim, Seon Hee Lim, Gitark Noh, Ki Wook Kim, Jaehyung Park, Hyeongho Jo, Hyuk Yoon, Cheol Min Shin, Young Soo Park, Dong Ho Lee
    The Korean Journal of Internal Medicine.2022; 37(3): 579.     CrossRef
  • Novel Glycemic Index Based on Continuous Glucose Monitoring to Predict Poor Clinical Outcomes in Critically Ill Patients: A Pilot Study
    Eun Yeong Ha, Seung Min Chung, Il Rae Park, Yin Young Lee, Eun Young Choi, Jun Sung Moon
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Understanding and Utilizing Claim Data from the Korean National Health Insurance Service (NHIS) and Health Insurance Review & Assessment (HIRA) Database for Research
    Dae-Sung Kyoung, Hun-Sung Kim
    Journal of Lipid and Atherosclerosis.2022; 11(2): 103.     CrossRef
  • Association of the atherogenic index of plasma with cardiovascular risk beyond the traditional risk factors: a nationwide population-based cohort study
    Si Hyoung Kim, Yun Kyung Cho, Ye-Jee Kim, Chang Hee Jung, Woo Je Lee, Joong-Yeol Park, Ji Hye Huh, Jun Goo Kang, Seong Jin Lee, Sung-Hee Ihm
    Cardiovascular Diabetology.2022;[Epub]     CrossRef
  • Current Status of Low-Density Lipoprotein Cholesterol Target Achievement in Patients with Type 2 Diabetes Mellitus in Korea Compared with Recent Guidelines
    Soo Jin Yun, In-Kyung Jeong, Jin-Hye Cha, Juneyoung Lee, Ho Chan Cho, Sung Hee Choi, SungWan Chun, Hyun Jeong Jeon, Ho-Cheol Kang, Sang Soo Kim, Seung-Hyun Ko, Gwanpyo Koh, Su Kyoung Kwon, Jae Hyuk Lee, Min Kyong Moon, Junghyun Noh, Cheol-Young Park, Sung
    Diabetes & Metabolism Journal.2022; 46(3): 464.     CrossRef
  • Sodium Glucose Cotransporter-2 Inhibitors as an Add-on Therapy to Metformin Plus Dipeptidyl Peptidase-4 Inhibitor in Patients with Type 2 Diabetes
    Jaehyun Bae, Young-eun Kim, Minyoung Lee, Yong-ho Lee, Byung-Wan Lee, Bong-Soo Cha, Eun Seok Kang
    Yonsei Medical Journal.2022; 63(6): 539.     CrossRef
  • Predictors for successful weight reduction during treatment with Dapagliflozin among patients with type 2 diabetes mellitus in primary care
    Youn Huh, Young Sik Kim
    BMC Primary Care.2022;[Epub]     CrossRef
  • Implications of the heterogeneity between guideline recommendations for the use of low dose aspirin in primary prevention of cardiovascular disease
    Xiao-Ying Li, Li Li, Sang-Hoon Na, Francesca Santilli, Zhongwei Shi, Michael Blaha
    American Journal of Preventive Cardiology.2022; 11: 100363.     CrossRef
  • Factors Influencing the Utilization of Diabetes Complication Tests Under the COVID-19 Pandemic: Machine Learning Approach
    Haewon Byeon
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Effects of exercise initiation and smoking cessation after new-onset type 2 diabetes mellitus on risk of mortality and cardiovascular outcomes
    Mee Kyoung Kim, Kyungdo Han, Bongsung Kim, Jinyoung Kim, Hyuk-Sang Kwon
    Scientific Reports.2022;[Epub]     CrossRef
  • Improvement in Age at Mortality and Changes in Causes of Death in the Population with Diabetes: An Analysis of Data from the Korean National Health Insurance and Statistical Information Service, 2006 to 2018
    Eugene Han, Sun Ok Song, Hye Soon Kim, Kang Ju Son, Sun Ha Jee, Bong-Soo Cha, Byung-Wan Lee
    Endocrinology and Metabolism.2022; 37(3): 466.     CrossRef
  • Analysis of Continuity of Care and Its Related Factors in Diabetic Patients: A Cross-Sectional Study
    Ji Yeh Shin, Ha Jin Kim, BeLong Cho, Yun Jun Yang, Jae Moon Yun
    Korean Journal of Family Medicine.2022; 43(4): 246.     CrossRef
  • Development of Various Diabetes Prediction Models Using Machine Learning Techniques
    Juyoung Shin, Jaewon Kim, Chanjung Lee, Joon Young Yoon, Seyeon Kim, Seungjae Song, Hun-Sung Kim
    Diabetes & Metabolism Journal.2022; 46(4): 650.     CrossRef
  • A causal relationship between alcohol intake and type 2 diabetes mellitus: A two-sample Mendelian randomization study
    Meiling Liu, Sunmin Park
    Nutrition, Metabolism and Cardiovascular Diseases.2022; 32(12): 2865.     CrossRef
  • Early glycaemic variability increases 28-day mortality and prolongs intensive care unit stay in critically ill patients with pneumonia
    Seong Ho Kim, Ji Young Kim, Eun Song Kim, Il Rae Park, Eun Yeong Ha, Seung Min Chung, Jun Sung Moon, Ji Sung Yoon, Kyu Chang Won, Hyoung Woo Lee
    Annals of Medicine.2022; 54(1): 2724.     CrossRef
  • Association of the Estimated Pulse Wave Velocity with Cardio-Vascular Disease Outcomes among Men and Women Aged 40–69 Years in the Korean Population: An 18-Year Follow-Up Report on the Ansung–Ansan Cohort in the Korean Genome Environment Study
    Byung Sik Kim, Yonggu Lee, Jin-Kyu Park, Young-Hyo Lim, Jeong-Hun Shin
    Journal of Personalized Medicine.2022; 12(10): 1611.     CrossRef
  • Perfluorinated compounds in adults and their association with fasting glucose and incident diabetes: a prospective cohort study
    Seung Min Chung, Dong-Gyu Heo, Ju-Hyun Kim, Ji Sung Yoon, Hyoung Woo Lee, Jong-Yeon Kim, Jun Sung Moon, Kyu Chang Won
    Environmental Health.2022;[Epub]     CrossRef
  • Differences in health behavior and nutrient intake status between diabetes-aware and unaware Korean adults based on the Korea national health and nutrition examination survey 2016–18 data: A cross-sectional study
    Anshul Sharma, Chen Lulu, Kee-Ho Song, Hae-Jeung Lee
    Frontiers in Public Health.2022;[Epub]     CrossRef
  • Improving Machine Learning Diabetes Prediction Models for the Utmost Clinical Effectiveness
    Juyoung Shin, Joonyub Lee, Taehoon Ko, Kanghyuck Lee, Yera Choi, Hun-Sung Kim
    Journal of Personalized Medicine.2022; 12(11): 1899.     CrossRef
  • Does Pitavastatin Therapy for Patients with Type 2 Diabetes and Dyslipidemia Affect Serum Adiponectin Levels and Insulin Sensitivity?
    Jeongmin Lee, Min-Hee Kim, Jung-Min Lee, Sang-Ah Chang
    Journal of Clinical Medicine.2022; 11(22): 6756.     CrossRef
  • Comparative Efficacy of Lobeglitazone Versus Pioglitazone on Albuminuria in Patients with Type 2 Diabetes Mellitus
    Kyung-Soo Kim, Sangmo Hong, Hong-Yup Ahn, Cheol-Young Park
    Diabetes Therapy.2021; 12(1): 171.     CrossRef
  • Efficacy and Safety of Once Weekly Dulaglutide in East Asian Patients with Type 2 Diabetes: Subgroup Analysis by Potential Influential Factors
    Jianhua Ma, Bin Zhang, Jianing Hou, Yongde Peng
    Diabetes Therapy.2021; 12(1): 211.     CrossRef
  • Early combination versus initial metformin monotherapy in the management of newly diagnosed type 2 diabetes: AnEast Asianperspective
    Linong Ji, Juliana C. N. Chan, Miao Yu, Kun Ho Yoon, Sin Gon Kim, Sung Hee Choi, Chien‐Ning Huang, Shih Te Tu, Chih‐Yuan Wang, Päivi Maria Paldánius, Wayne H. H. Sheu
    Diabetes, Obesity and Metabolism.2021; 23(1): 3.     CrossRef
  • Effectiveness and safety of sodium‐glucose co‐transporter‐2 inhibitors compared with dipeptidyl peptidase‐4 inhibitors in older adults with type 2 diabetes: A nationwide population‐based study
    Seung Jin Han, Kyoung Hwa Ha, Nami Lee, Dae Jung Kim
    Diabetes, Obesity and Metabolism.2021; 23(3): 682.     CrossRef
  • Glucodynamics and glucocracy in type 2 diabetes mellitus: clinical evidence and practice-based opinion on modern sulfonylurea use, from an International Expert Group (South Asia, Middle East & Africa) via modified Delphi method
    Sanjay Kalra, Das A. K., Fariduddin Md., Shaikh K., Shah P., Rehim A. A., John M., Shaikh S., Orabi A., Saraswati M. R., Shahjada Selim, Baruah M. P., K. K. Gangopadhyay, Langi Y. A., Nair T., Dhanwal D., Thapa S. D., Deshmukh V., D. Dutta, Khalfan H., Ma
    Current Medical Research and Opinion.2021; 37(3): 403.     CrossRef
  • The association between lipoprotein (a) and carotid atherosclerosis in patients with type 2 diabetes without pre-existing cardiovascular disease: A cross-sectional study
    Ji Eun Jun, Hongsun Kang, You-Cheol Hwang, Kyu Jeung Ahn, Ho-Yeon Chung, In-Kyung Jeong
    Diabetes Research and Clinical Practice.2021; 171: 108622.     CrossRef
  • Glycaemic control with add‐on thiazolidinedione or a sodium‐glucose co‐transporter‐2 inhibitor in patients with type 2 diabetes after the failure of an oral triple antidiabetic regimen: A 24‐week, randomized controlled trial
    Jaehyun Bae, Ji Hye Huh, Minyoung Lee, Yong‐Ho Lee, Byung‐Wan Lee
    Diabetes, Obesity and Metabolism.2021; 23(2): 609.     CrossRef
  • Effect of Tai Chi on Quality of Life, Body Mass Index, and Waist-Hip Ratio in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis
    Jiawei Qin, Yannan Chen, Shuai Guo, Yue You, Ying Xu, Jingsong Wu, Zhizhen Liu, Jia Huang, Lidian Chen, Jing Tao
    Frontiers in Endocrinology.2021;[Epub]     CrossRef
  • Severe hypoglycemia as a preventable risk factor for cardiovascular disease in patients with type 2 diabetes mellitus
    Soo-Yeon Choi, Seung-Hyun Ko
    The Korean Journal of Internal Medicine.2021; 36(2): 263.     CrossRef
  • Diabetes Fact Sheets in Korea, 2020: An Appraisal of Current Status
    Chan-Hee Jung, Jang Won Son, Shinae Kang, Won Jun Kim, Hun-Sung Kim, Hae Soon Kim, Mihae Seo, Hye-Jung Shin, Seong-Su Lee, Su Jin Jeong, Yongin Cho, Seung Jin Han, Hyang Mi Jang, Mira Rho, Shinbi Lee, Mihyun Koo, Been Yoo, Jung-Wha Moon, Hye Young Lee, Ja
    Diabetes & Metabolism Journal.2021; 45(1): 1.     CrossRef
  • Estimation of sodium‐glucose cotransporter 2 inhibitor–related genital and urinary tract infections via electronic medical record–based common data model
    SooJeong Ko, HyungMin Kim, Jiwon Shinn, Sun‐ju Byeon, Jeong‐Hee Choi, Hun‐Sung Kim
    Journal of Clinical Pharmacy and Therapeutics.2021; 46(4): 975.     CrossRef
  • Pharmacokinetic and Pharmacodynamic Comparison of Two Formulations of a Fixed-Dose Combination of Gemigliptin/Rosuvastatin 50/20 mg: A Randomized, Open-Label, Single-Dose, Two-Way Crossover Study
    Eunsol Yang, Hyounggyoon Yoo, In-Jin Jang, Kyung-Sang Yu, SeungHwan Lee
    Drug Design, Development and Therapy.2021; Volume 15: 651.     CrossRef
  • Severe hypoglycemia and the risk of end stage renal disease in type 2 diabetes
    Jae-Seung Yun, Yong-Moon Park, Kyungdo Han, Hyung-Wook Kim, Seon-Ah Cha, Yu-Bae Ahn, Seung-Hyun Ko
    Scientific Reports.2021;[Epub]     CrossRef
  • Long-term HbA1c variability and the development and progression of diabetic retinopathy in subjects with type 2 diabetes
    Han Ul Kim, Sung Pyo Park, Yong-Kyu Kim
    Scientific Reports.2021;[Epub]     CrossRef
  • Impaired fasting glucose levels in overweight or obese subjects for screening of type 2 diabetes in Korea
    Jin-Hee Lee, Suk Chon, Seon-Ah Cha, Sun-Young Lim, Kook-Rye Kim, Jae-Seung Yun, Sang Youl Rhee, Kun-Ho Yoon, Yu-Bae Ahn, Jeong-Taek Woo, Seung-Hyun Ko
    The Korean Journal of Internal Medicine.2021; 36(2): 382.     CrossRef
  • Simple Sugar Intake in Diabetics and Non-Diabetic Patients Who Visit Primary Care Clinic
    Seo Young Park, Geun Bae Moon, Young Sik Kim, Seung Hee Kim
    Korean Journal of Family Practice.2021; 11(1): 29.     CrossRef
  • Effect of Teneligliptin versus Sulfonylurea on Major Adverse Cardiovascular Outcomes in People with Type 2 Diabetes Mellitus: A Real-World Study in Korea
    Da Hea Seo, Kyoung Hwa Ha, So Hun Kim, Dae Jung Kim
    Endocrinology and Metabolism.2021; 36(1): 70.     CrossRef
  • Best Achievements in Clinical Medicine in Diabetes and Dyslipidemia in 2020
    Eun-Jung Rhee, Mee-Kyung Kim, Won-Young Lee
    Endocrinology and Metabolism.2021; 36(1): 41.     CrossRef
  • Factors Associated with Poor Glycemic Control Amongst Rural Residents with Diabetes in Korea
    Junhee Ahn, Youngran Yang
    Healthcare.2021; 9(4): 391.     CrossRef
  • Diabetes and Stroke
    Junghyun Noh
    The Journal of Korean Diabetes.2021; 22(1): 26.     CrossRef
  • Epidemiology of cardiovascular disease and its risk factors in Korea
    Hyeon Chang Kim
    Global Health & Medicine.2021; 3(3): 134.     CrossRef
  • Cumulative exposure to impaired fasting glucose and future risk of type 2 diabetes mellitus
    Mee Kyoung Kim, Kyungdo Han, Eun Sil Koh, Oak-Kee Hong, Ki-Hyun Baek, Ki-Ho Song, Hyuk-Sang Kwon
    Diabetes Research and Clinical Practice.2021; 175: 108799.     CrossRef
  • No Relevant Pharmacokinetic Drug–Drug Interaction Between the Sodium-Glucose Co-Transporter-2 Inhibitor Empagliflozin and Lobeglitazone, a Peroxisome Proliferator-Activated Receptor-γ Agonist, in Healthy Subjects
    Yu Kyong Kim, Jun Gi Hwang, Min Kyu Park
    Drug Design, Development and Therapy.2021; Volume 15: 1725.     CrossRef
  • Comparative Renal Effects of Dipeptidyl Peptidase-4 Inhibitors and Sodium-Glucose Cotransporter 2 Inhibitors on Individual Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis
    Jae Hyun Bae, Eun-Gee Park, Sunhee Kim, Sin Gon Kim, Seokyung Hahn, Nam Hoon Kim
    Endocrinology and Metabolism.2021; 36(2): 388.     CrossRef
  • The Association Between Second-Line Oral Antihyperglycemic Medication on Types of Dementia in Type 2 Diabetes: A Nationwide Real-World Longitudinal Study
    Won Jun Kim, Jung Hyun Noh, Kyungdo Han, Cheol-Young Park
    Journal of Alzheimer's Disease.2021; 81(3): 1263.     CrossRef
  • Personalized Type 2 Diabetes Management Using a Mobile Application Integrated with Electronic Medical Records: An Ongoing Randomized Controlled Trial
    Eun-Young Lee, Jae-Seung Yun, Seon-Ah Cha, Sun-Young Lim, Jin-Hee Lee, Yu-Bae Ahn, Kun-Ho Yoon, Seung-Hyun Ko
    International Journal of Environmental Research and Public Health.2021; 18(10): 5300.     CrossRef
  • Cerium Oxide Nanoparticle-Containing Colorimetric Contact Lenses for Noninvasively Monitoring Human Tear Glucose
    Sijin Park, Juil Hwang, Hee-Jae Jeon, Woo Ri Bae, In-Kyung Jeong, Tae Gi Kim, Jaheon Kang, Young-Geun Han, Euiheon Chung, Dong Yun Lee
    ACS Applied Nano Materials.2021; 4(5): 5198.     CrossRef
  • Low nutritional status links to the prevalence of pre-metabolic syndrome and its cluster in metabolically high-risk Korean adults
    Jieun Kim, Kyoungsik Jeong, Siwoo Lee, Bok-Nam Seo, Younghwa Baek
    Medicine.2021; 100(20): e25905.     CrossRef
  • Dynamics of Serum Retinol and Alpha-Tocopherol Levels According to Non-Alcoholic Fatty Liver Disease Status
    Dongsub Jeon, Minkook Son, Juhyun Shim
    Nutrients.2021; 13(5): 1720.     CrossRef
  • Classification and Prediction on the Effects of Nutritional Intake on Overweight/Obesity, Dyslipidemia, Hypertension and Type 2 Diabetes Mellitus Using Deep Learning Model: 4–7th Korea National Health and Nutrition Examination Survey
    Hyerim Kim, Dong Hoon Lim, Yoona Kim
    International Journal of Environmental Research and Public Health.2021; 18(11): 5597.     CrossRef
  • Comparison of insulin glargine 300 U/mL versus glargine 100 U/mL on glycemic control and hypoglycemic events in East Asian patients with type 2 diabetes: A Patient-level meta-analysis of phase 3 studies
    Linong Ji, Yan Bi, Shandong Ye, Yun Huang, Xia Zhang, Shuhua Shang, Nan Cui, Huiqiu Yin, Minlu Zhang
    Diabetes Research and Clinical Practice.2021; 176: 108848.     CrossRef
  • Modifiable Risk Factors for Cardiovascular Disease in Korea and Japan
    Ahmed Arafa, Hyeok-Hee Lee, Ehab S. Eshak, Kokoro Shirai, Keyang Liu, Jiaqi Li, Naharin Sultana Anni, Sun Young Shim, Hyeon Chang Kim, Hiroyasu Iso
    Korean Circulation Journal.2021; 51(8): 643.     CrossRef
  • Sodium-Glucose Cotransporter-2 Inhibitors Ameliorate Liver Enzyme Abnormalities in Korean Patients With Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease
    Won Euh, Soo Lim, Jin-Wook Kim
    Frontiers in Endocrinology.2021;[Epub]     CrossRef
  • Effect of serum isoniazid level on treatment outcomes among tuberculosis patients with slow response – A retrospective cohort study
    Hyung Woo Kim, Ah Young Shin, Jick Hwan Ha, Joong Hyun Ahn, Hye Seon Kang, Ju Sang Kim
    Journal of Infection and Chemotherapy.2021; 27(11): 1555.     CrossRef
  • Recent Perspective of Metformin
    Sangmo Hong
    The Journal of Korean Diabetes.2021; 22(2): 85.     CrossRef
  • Diabetes Monotherapies versus Metformin-Based Combination Therapy for the Treatment of Type 2 Diabetes
    Awadhesh K Singh, Ritu Singh, Partha Pratim Chakraborty
    International Journal of General Medicine.2021; Volume 14: 3833.     CrossRef
  • The Metabolic Score for Insulin Resistance (METS-IR) as a Predictor of Incident Ischemic Heart Disease: A Longitudinal Study among Korean without Diabetes
    Jihyun Yoon, Donghyuk Jung, Yongjae Lee, Byoungjin Park
    Journal of Personalized Medicine.2021; 11(8): 742.     CrossRef
  • Time to Reach Target Glycosylated Hemoglobin Is Associated with Long-Term Durable Glycemic Control and Risk of Diabetic Complications in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A 6-Year Observational Study (Diabetes Metab J 2021;45:368-78)
    Ja Young Jeon
    Diabetes & Metabolism Journal.2021; 45(4): 613.     CrossRef
  • 2021 Clinical Practice Guidelines for Diabetes Mellitus of the Korean Diabetes Association
    Kyu Yeon Hur, Min Kyong Moon, Jong Suk Park, Soo-Kyung Kim, Seung-Hwan Lee, Jae-Seung Yun, Jong Ha Baek, Junghyun Noh, Byung-Wan Lee, Tae Jung Oh, Suk Chon, Ye Seul Yang, Jang Won Son, Jong Han Choi, Kee Ho Song, Nam Hoon Kim, Sang Yong Kim, Jin Wha Kim,
    Diabetes & Metabolism Journal.2021; 45(4): 461.     CrossRef
  • Time to Reach Target Glycosylated Hemoglobin Is Associated with Long-Term Durable Glycemic Control and Risk of Diabetic Complications in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A 6-Year Observational Study (Diabetes Metab J 2021;45:368-78)
    Kyoung Jin Kim, Jimi Choi, Jae Hyun Bae, Kyeong Jin Kim, Hye Jin Yoo, Ji A Seo, Nan Hee Kim, Kyung Mook Choi, Sei Hyun Baik, Sin Gon Kim, Nam Hoon Kim
    Diabetes & Metabolism Journal.2021; 45(4): 617.     CrossRef
  • Cardiovascular Safety of SGLT2 Inhibitors Compared to DPP4 Inhibitors and Sulfonylureas as the Second-Line of Therapy in T2DM Using Large, Real-World Clinical Data in Korea
    Kyuho Kim, Sung Hee Choi
    Diabetes & Metabolism Journal.2021; 45(4): 502.     CrossRef
  • The Effects of Dietary Education Interventions on Individuals with Type 2 Diabetes: A Systematic Review and Meta-Analysis
    Juri Kim, Myung-Haeng Hur
    International Journal of Environmental Research and Public Health.2021; 18(16): 8439.     CrossRef
  • Treatment Patterns of Type 2 Diabetes Assessed Using a Common Data Model Based on Electronic Health Records of 2000–2019
    Kyung Ae Lee, Heung Yong Jin, Yu Ji Kim, Yong-Jin Im, Eun-Young Kim, Tae Sun Park
    Journal of Korean Medical Science.2021;[Epub]     CrossRef
  • Nonalcoholic fatty liver disease and the risk of insulin-requiring gestational diabetes
    Sang Youn You, Kyungdo Han, Seung-Hawn Lee, Mee Kyoung Kim
    Diabetology & Metabolic Syndrome.2021;[Epub]     CrossRef
  • Comparison of the Effects of Various Antidiabetic Medication on Bone Mineral Density in Patients with Type 2 Diabetes Mellitus
    Jeonghoon Ha, Yejee Lim, Mee Kyoung Kim, Hyuk-Sang Kwon, Ki-Ho Song, Seung Hyun Ko, Moo Il Kang, Sung Dae Moon, Ki-Hyun Baek
    Endocrinology and Metabolism.2021; 36(4): 895.     CrossRef
  • Non-Laboratory-Based Simple Screening Model for Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Developed Using Multi-Center Cohorts
    Jiwon Kim, Minyoung Lee, Soo Yeon Kim, Ji-Hye Kim, Ji Sun Nam, Sung Wan Chun, Se Eun Park, Kwang Joon Kim, Yong-ho Lee, Joo Young Nam, Eun Seok Kang
    Endocrinology and Metabolism.2021; 36(4): 823.     CrossRef
  • High Fibrosis-4 Index Is Related with Worse Clinical Outcome in Patients with Coronavirus Disease 2019 and Diabetes Mellitus: A Multicenter Observational Study
    Sung-Woo Kim, Jae-Han Jeon, Jun Sung Moon, Mi Kyung Kim
    Endocrinology and Metabolism.2021; 36(4): 800.     CrossRef
  • Predictive Value of the Atherogenic Index of Plasma (AIP) for the Risk of Incident Ischemic Heart Disease among Non-Diabetic Koreans
    Julie J. Kim, Jihyun Yoon, Yong-Jae Lee, Byoungjin Park, Dong-Hyuk Jung
    Nutrients.2021; 13(9): 3231.     CrossRef
  • Quantity and quality of complementary and alternative medicine recommendations in clinical practice guidelines for type 2 diabetes mellitus: A systematic review
    Jeremy Y. Ng, Kiran D. Verma, Kevin Gilotra
    Nutrition, Metabolism and Cardiovascular Diseases.2021; 31(11): 3004.     CrossRef
  • Framingham Risk Score Assessment in Subjects with Pre-diabetes and Diabetes: A Cross-Sectional Study in Korea
    Hyuk Sang Kwon, Kee Ho Song, Jae Myung Yu, Dong Sun Kim, Ho Sang Shon, Kyu Jeung Ahn, Sung Hee Choi, Seung Hyun Ko, Won Kim, Kyoung Hwa Lee, Il Seong Nam-Goong, Tae Sun Park
    Journal of Obesity & Metabolic Syndrome.2021; 30(3): 261.     CrossRef
  • Frequency of Exposure to Impaired Fasting Glucose and Risk of Mortality and Cardiovascular Outcomes
    Seung-Hwan Lee, Kyungdo Han, Hyuk-Sang Kwon, Mee Kyoung Kim
    Endocrinology and Metabolism.2021; 36(5): 1007.     CrossRef
  • How Can We Adopt the Glucose Tolerance Test to Facilitate Predicting Pregnancy Outcome in Gestational Diabetes Mellitus?
    Kyeong Jin Kim, Nam Hoon Kim, Jimi Choi, Sin Gon Kim, Kyung Ju Lee
    Endocrinology and Metabolism.2021; 36(5): 988.     CrossRef
  • Symptom Clusters and Quality of Life in Patients with Type 2 Diabetes Mellitus
    Su-Yeon Hong, Yang-Sook Yoo
    Korean Journal of Adult Nursing.2021; 33(5): 498.     CrossRef
  • Long-term effectiveness and safety of quadruple combination therapy with empagliflozin versus dapagliflozin in patients with type 2 diabetes: 3-year prospective observational study
    Eu Jeong Ku, Dong-Hwa Lee, Hyun Jeong Jeon, Tae Keun Oh
    Diabetes Research and Clinical Practice.2021; 182: 109123.     CrossRef
  • Long-term effects of the mean hemoglobin A1c levels after percutaneous coronary intervention in patients with diabetes
    Jaekyung Bae, Ji-Hyung Yoon, Jung-Hee Lee, Jong-Ho Nam, Chan-Hee Lee, Jang-Won Son, Ung Kim, Jong-Seon Park, Dong-Gu Shin
    The Korean Journal of Internal Medicine.2021; 36(6): 1365.     CrossRef
  • Role of Leptin with hypothyroidism in Iraqi diabetic type 2 patients
    Sulaiman M. Hasan
    Bionatura.2021; 6(4): 2274.     CrossRef
  • Impacts of statin and metformin on neuropathy in patients with type 2 diabetes mellitus: Korean Health Insurance data
    Hong Ki Min, Se Hee Kim, Jong Han Choi, Kyomin Choi, Hae-Rim Kim, Sang-Heon Lee
    World Journal of Clinical Cases.2021; 9(33): 10198.     CrossRef
  • Muscle strength, an independent determinant of glycemic control in older adults with long-standing type 2 diabetes: a prospective cohort study
    Bo Kyung Koo, Seoil Moon, Min Kyong Moon
    BMC Geriatrics.2021;[Epub]     CrossRef
  • Comparisons of Neuropsychological Characteristics of Elderly Subjects With Versus Without History of Agent Orange Exposure
    Seunggyu Han, Jinhee Choi, Hyung Seok So, Hayun Choi, Hong Jin Jeon, Jinseob Kim, Kiwon Kim
    Journal of Korean Neuropsychiatric Association.2021; 60(4): 346.     CrossRef
  • Uric Acid Variability as a Predictive Marker of Newly Developed Cardiovascular Events in Type 2 Diabetes
    Hae Kyung Kim, Minyoung Lee, Yong-ho Lee, Byung-Wan Lee, Bong-Soo Cha, Eun Seok Kang
    Frontiers in Cardiovascular Medicine.2021;[Epub]     CrossRef
  • Metformin use and cardiovascular outcomes in patients with diabetes and chronic kidney disease: a nationwide cohort study
    Min Ho Kim, Hyung Jung Oh, Soon Hyo Kwon, Jin Seok Jeon, Hyunjin Noh, Dong Cheol Han, Hyoungnae Kim, Dong-Ryeol Ryu
    Kidney Research and Clinical Practice.2021; 40(4): 660.     CrossRef
  • Sleep Duration and Its Associations with Mortality and Quality of Life in Chronic Obstructive Pulmonary Disease: Results from the 2007–2015 KNAHNES
    So Jeong Kim, Nakwon Kwak, Sun Mi Choi, Jinwoo Lee, Young Sik Park, Chang-Hoon Lee, Sang-Min Lee, Chul-Gyu Yoo, Jaeyoung Cho
    Respiration.2021; 100(11): 1043.     CrossRef
  • Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus: A Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
    Byung-Wan Lee, Yong-ho Lee, Cheol-Young Park, Eun-Jung Rhee, Won-Young Lee, Nan-Hee Kim, Kyung Mook Choi, Keun-Gyu Park, Yeon-Kyung Choi, Bong-Soo Cha, Dae Ho Lee
    Diabetes & Metabolism Journal.2020; 44(3): 382.     CrossRef
  • Effects of Co‐administration of Sulfonylureas and Antimicrobial Drugs on Hypoglycemia in Patients with Type 2 Diabetes Using a Case‐Crossover Design
    Sera Lee, Miyoung Ock, Hun‐Sung Kim, Hyunah Kim
    Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy.2020; 40(9): 902.     CrossRef
  • Diabetic kidney disease: seven questions
    Dong Ho Yang, So-Young Lee
    Journal of the Korean Medical Association.2020; 63(1): 6.     CrossRef
  • Diabetes and Metabolism Journal in 2020: Good to Great
    In-Kyung Jeong
    Diabetes & Metabolism Journal.2020; 44(1): 1.     CrossRef
  • The Use of Mobile Personal Health Records for Hemoglobin A1c Regulation in Patients With Diabetes: Retrospective Observational Study
    Dongjin Seo, Yu Rang Park, Yura Lee, Ji Young Kim, Joong-Yeol Park, Jae-Ho Lee
    Journal of Medical Internet Research.2020; 22(6): e15372.     CrossRef
  • Non-glucose risk factors in the pathogenesis of diabetic peripheral neuropathy
    Kyung Ae Lee, Tae Sun Park, Heung Yong Jin
    Endocrine.2020; 70(3): 465.     CrossRef
  • An Assessment of Pharmacokinetic Interaction Between Lobeglitazone and Sitagliptin After Multiple Oral Administrations in Healthy Men
    Seol Ju Moon, Kyung-Sang Yu, Min-Gul Kim
    Clinical Therapeutics.2020; 42(6): 1047.     CrossRef
  • The Clinical Characteristics and Outcomes of Patients with Moderate-to-Severe Coronavirus Disease 2019 Infection and Diabetes in Daegu, South Korea
    Mi Kyung Kim, Jae-Han Jeon, Sung-Woo Kim, Jun Sung Moon, Nan Hee Cho, Eugene Han, Ji Hong You, Ji Yeon Lee, Miri Hyun, Jae Seok Park, Yong Shik Kwon, Yeon-Kyung Choi, Ki Tae Kwon, Shin Yup Lee, Eon Ju Jeon, Jin-Woo Kim, Hyo-Lim Hong, Hyun Hee Kwon, Chi Yo
    Diabetes & Metabolism Journal.2020; 44(4): 602.     CrossRef
  • The Risk of Diabetes on Clinical Outcomes in Patients with Coronavirus Disease 2019: A Retrospective Cohort Study
    Seung Min Chung, Yin Young Lee, Eunyeong Ha, Ji Sung Yoon, Kyu Chang Won, Hyoung Woo Lee, Jian Hur, Kyung Soo Hong, Jong Geol Jang, Hyun Jung Jin, Eun Young Choi, Kyeong-Cheol Shin, Jin Hong Chung, Kwan Ho Lee, June Hong Ahn, Jun Sung Moon
    Diabetes & Metabolism Journal.2020; 44(3): 405.     CrossRef
  • A model to predict risk of stroke in middle-aged adults with type 2 diabetes generated from a nationwide population-based cohort study in Korea
    Mee-Kyoung Kim, Kyungdo Han, Jae-Hyoung Cho, Hyuk-Sang Kwon, Kun-Ho Yoon, Seung-Hwan Lee
    Diabetes Research and Clinical Practice.2020; 163: 108157.     CrossRef
  • Effects of Cardiovascular Risk Factor Variability on Health Outcomes
    Seung-Hwan Lee, Mee Kyoung Kim, Eun-Jung Rhee
    Endocrinology and Metabolism.2020; 35(2): 217.     CrossRef
  • Sodium-Glucose Cotransporter-2 Inhibitor for Renal Function Preservation in Patients with Type 2 Diabetes Mellitus: A Korean Diabetes Association and Korean Society of Nephrology Consensus Statement
    Tae Jung Oh, Ju-Young Moon, Kyu Yeon Hur, Seung Hyun Ko, Hyun Jung Kim, Taehee Kim, Dong Won Lee, Min Kyong Moon
    Diabetes & Metabolism Journal.2020; 44(4): 489.     CrossRef
  • Metformin Treatment for Patients with Diabetes and Chronic Kidney Disease: A Korean Diabetes Association and Korean Society of Nephrology Consensus Statement
    Kyu Yeon Hur, Mee Kyoung Kim, Seung Hyun Ko, Miyeun Han, Dong Won Lee, Hyuk-Sang Kwon
    Diabetes & Metabolism Journal.2020; 44(1): 3.     CrossRef
  • Prevalence and Current Management of Cardiovascular Risk Factors in Korean Adults Based on Fact Sheets
    Eun-Jung Rhee
    Endocrinology and Metabolism.2020; 35(1): 85.     CrossRef
  • Using adult stem cells to monitor endothelial dysfunction in diabetes mellitus
    Rohit Jain, Hassan Awal, Sabyasachi Sen
    Journal of Diabetes and its Complications.2020; 34(7): 107588.     CrossRef
  • Fibrates Revisited: Potential Role in Cardiovascular Risk Reduction
    Nam Hoon Kim, Sin Gon Kim
    Diabetes & Metabolism Journal.2020; 44(2): 213.     CrossRef
  • Metformin treatment for patients with diabetes and chronic kidney disease: A Korean Diabetes Association and Korean Society of Nephrology consensus statement
    Kyu Yeon Hur, Mee Kyoung Kim, Seung Hyun Ko, Miyeun Han, Dong Won Lee, Hyuk-Sang Kwon
    Kidney Research and Clinical Practice.2020; 39(1): 32.     CrossRef
  • Generation of iPSC-derived insulin-producing cells from patients with type 1 and type 2 diabetes compared with healthy control
    Min Jung Kim, Eun Young Lee, Young-Hye You, Hae Kyung Yang, Kun-Ho Yoon, Ji-Won Kim
    Stem Cell Research.2020; 48: 101958.     CrossRef
  • Glucose-Lowering Effect of Home-Delivered Therapeutic Meals in Patients with Type 2 Diabetes
    Jong Han Choi, Se Hee Min, Kyeong Hye Lim, Uoon Jeong Shin, Min-Seon Kim
    The Journal of Korean Diabetes.2020; 21(1): 46.     CrossRef
  • Subclinical thyroid dysfunction in the first trimester of pregnancy: ‘Disease’ versus physiological (pulsatile) variation in TSH concentrations
    Krzysztof C. Lewandowski, Karolina Garnysz, Wojciech Horzelski, Joanna Kawalec, Karolina Budzen, Mariusz Grzesiak, Andrzej Lewinski
    Clinical Endocrinology.2020; 93(6): 739.     CrossRef
  • Usefulness of carotid ultrasonography and treatment of carotid disease
    Seung Min Kim, Yeon Jung Kim, Keonwoo Kim, Bum Joon Kim
    Journal of the Korean Medical Association.2020; 63(6): 342.     CrossRef
  • Clinical Characteristics and Prevalence of Comorbidities according to Metformin Use in Korean Patients with Type 2 Diabetes
    Sang Ouk Chin, In Gyoon Ha, Sang Youl Rhee, Su Jin Jeong, Suk Chon, Sung Hoon Kim, Kyu Jeung Ahn, Sei Hyun Baik, Yongsoo Park, Moon Suk Nam, Kwan Woo Lee, Jeong Taek Woo
    International Journal of Endocrinology.2020; 2020: 1.     CrossRef
  • Prepregnancy smoking and the risk of gestational diabetes requiring insulin therapy
    Mee Kyoung Kim, Kyungdo Han, Sang Youn You, Hyuk-Sang Kwon, Kun-Ho Yoon, Seung-Hwan Lee
    Scientific Reports.2020;[Epub]     CrossRef
  • Use of SGLT-2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Abdominal Obesity: An Asian Perspective and Expert Recommendations
    Wayne Huey-Herng Sheu, Siew Pheng Chan, Bien J. Matawaran, Chaicharn Deerochanawong, Ambrish Mithal, Juliana Chan, Ketut Suastika, Chin Meng Khoo, Huu Man Nguyen, Ji Linong, Andrea Luk, Kun-Ho Yoon
    Diabetes & Metabolism Journal.2020; 44(1): 11.     CrossRef
  • Response: The Risk of Diabetes on Clinical Outcomes in Patients with Coronavirus Disease 2019: A Retrospective Cohort Study (Diabetes Metab J 2020;44:405–13)
    Seung Min Chung, June Hong Ahn, Jun Sung Moon
    Diabetes & Metabolism Journal.2020; 44(4): 625.     CrossRef
  • Effect of roux-en Y gastric bypass surgery on patients with type 2 diabetes mellitus
    Ke-Yan Chen, Ying-Li Liu, Jin-Cai Shang, De-Wang Su, Rong-Rong Yao, De-Zhi Ke, Hao Tian
    Medicine.2020; 99(23): e20382.     CrossRef
  • Comparison and Implication of the Contemporary Blood Pressure Guidelines on Korean Population
    So Mi Jemma Cho, Hokyou Lee, Hyeon Chang Kim
    Korean Circulation Journal.2020; 50(6): 485.     CrossRef
  • Efficacy and safety of evogliptin treatment in patients with type 2 diabetes: A multicentre, active‐controlled, randomized, double‐blind study with open‐label extension (the EVERGREEN study)
    Gyuri Kim, Soo Lim, Hyuk‐Sang Kwon, Ie B. Park, Kyu J. Ahn, Cheol‐Young Park, Su K. Kwon, Hye S. Kim, Seok W. Park, Sin G. Kim, Min K. Moon, Eun S. Kim, Choon H. Chung, Kang S. Park, Mikyung Kim, Dong J. Chung, Chang B. Lee, Tae H. Kim, Moon‐Kyu Lee
    Diabetes, Obesity and Metabolism.2020; 22(9): 1527.     CrossRef
  • Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease
    Kyung-Soo Kim, Byung-Wan Lee
    Clinical and Molecular Hepatology.2020; 26(4): 430.     CrossRef
  • Predicting the Development of Myocardial Infarction in Middle-Aged Adults with Type 2 Diabetes: A Risk Model Generated from a Nationwide Population-Based Cohort Study in Korea
    Seung-Hwan Lee, Kyungdo Han, Hun-Sung Kim, Jae-Hyoung Cho, Kun-Ho Yoon, Mee Kyoung Kim
    Endocrinology and Metabolism.2020; 35(3): 636.     CrossRef
  • Fasting Plasma Glucose Level Independently Predicts the Mortality of Patients with Coronavirus Disease 2019 Infection: A Multicenter, Retrospective Cohort Study
    Min Cheol Chang, Jong-Moon Hwang, Jae-Han Jeon, Sang Gyu Kwak, Donghwi Park, Jun Sung Moon
    Endocrinology and Metabolism.2020; 35(3): 595.     CrossRef
  • Sodium-glucose cotransporter-2 inhibitor for renal function preservation in patients with type 2 diabetes mellitus: A Korean Diabetes Association and Korean Society of Nephrology consensus statement
    Tae Jung Oh, Ju-Young Moon, Kyu Yeon Hur, Seung Hyun Ko, Hyun Jung Kim, Taehee Kim, Dong Won Lee, Min Kyong Moon
    Kidney Research and Clinical Practice.2020; 39(3): 269.     CrossRef
  • Dynamic changes in nocturnal blood glucose levels are associated with sleep-related features in patients with obstructive sleep apnea
    Jung-Ick Byun, Kwang Su Cha, Ji Eun Jun, Tae-Joon Kim, Ki-Young Jung, In-Kyung Jeong, Won Chul Shin
    Scientific Reports.2020;[Epub]     CrossRef
  • Effect of Switching from Linagliptin to Teneligliptin Dipeptidyl Peptidase-4 Inhibitors in Older Patients with Type 2 Diabetes Mellitus


    Eugene Han, Minyoung Lee, Yong-ho Lee, Hye Soon Kim, Byung-wan Lee, Bong-Soo Cha, Eun Seok Kang
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2020; Volume 13: 4113.     CrossRef
  • A prospective cohort study on effects of gemigliptin on cardiovascular outcomes in patients with type 2 diabetes (OPTIMUS study)
    Eun Heui Kim, Sang Soo Kim, Dong Jun Kim, Young Sik Choi, Chang Won Lee, Bon Jeong Ku, Kwang Soo Cha, Kee Ho Song, Dae Kyeong Kim, In Joo Kim
    Scientific Reports.2020;[Epub]     CrossRef
  • Effect of Variability in Blood Pressure, Glucose and Cholesterol Concentrations, and Body Weight on Emergency Hospitalization and 30‐Day Mortality in the General Population
    Seung‐Hwan Lee, Kyungdo Han, Hyuk‐Sang Kwon, Kun‐Ho Yoon, Mee Kyoung Kim
    Journal of the American Heart Association.2020;[Epub]     CrossRef
  • Systematic review of clinical practice guidelines to identify recommendations for sleep in type 2 diabetes mellitus management
    Aisling Smyth, Mark Jenkins, Melissa Dunham, Yvonne Kutzer, Shahrad Taheri, Lisa Whitehead
    Diabetes Research and Clinical Practice.2020; 170: 108532.     CrossRef
  • The risk factors for treatment-related mortality within first three months after kidney transplantation
    Ye Na Kim, Do Hyoung Kim, Ho Sik Shin, Sangjin Lee, Nuri Lee, Min-Jeong Park, Wonkeun Song, Seri Jeong, Robert Jeenchen Chen
    PLOS ONE.2020; 15(12): e0243586.     CrossRef
  • The triglyceride glucose index is a simple and low-cost marker associated with atherosclerotic cardiovascular disease: a population-based study
    Sangmo Hong, Kyungdo Han, Cheol-Young Park
    BMC Medicine.2020;[Epub]     CrossRef
  • The triglyceride-glucose index predicts ischemic heart disease risk in Koreans: a prospective study using National Health Insurance Service data
    Byoungjin Park, Yong-Jae Lee, Hye Sun Lee, Dong-Hyuk Jung
    Cardiovascular Diabetology.2020;[Epub]     CrossRef
  • Increased Age of Death and Change in Causes of Death Among Persons With Diabetes Mellitus From the Korean National Health Insurance and Statistical Information Service, 2006 to 2018
    Eugene Han, Sun Ok Song, Hye Soon Kim, Kang Ju Son, Sun Ha Jee, Bong-Soo Cha, Byung-Wan Lee
    SSRN Electronic Journal .2020;[Epub]     CrossRef
  • Letter: Dipeptidyl Peptidase-4 Inhibitors versus Other Antidiabetic Drugs Added to Metformin Monotherapy in Diabetic Retinopathy Progression: A Real World-Based Cohort Study (Diabetes Metab J 2019;43:640–8)
    Jun Sung Moon
    Diabetes & Metabolism Journal.2019; 43(6): 911.     CrossRef
  • Differences in prevalence of hypertension subtypes according to the 2018 Korean Society of Hypertension and 2017 American College of Cardiology/American Heart Association guidelines: The Korean National Health and Nutrition Examination Survey, 2007–2017 (
    So Mi Jemma Cho, Hokyou Lee, Hyeon Chang Kim
    Clinical Hypertension.2019;[Epub]     CrossRef
  • Adult Stem Cells: Beyond Regenerative Tool, More as a Bio-Marker in Obesity and Diabetes
    Sabyasachi Sen
    Diabetes & Metabolism Journal.2019; 43(6): 744.     CrossRef
  • Cholesterol levels and development of cardiovascular disease in Koreans with type 2 diabetes mellitus and without pre-existing cardiovascular disease
    Mee Kyoung Kim, Kyungdo Han, Han Na Joung, Ki-Hyun Baek, Ki-Ho Song, Hyuk-Sang Kwon
    Cardiovascular Diabetology.2019;[Epub]     CrossRef
  • Management of Cardiovascular Risk Factors in Elderly Diabetes Mellitus Patients
    Sung Hoon Yu
    The Journal of Korean Diabetes.2019; 20(4): 233.     CrossRef
  • Letter: Comparison of the Efficacy of Rosuvastatin Monotherapy 20 mg with Rosuvastatin 5 mg and Ezetimibe 10 mg Combination Therapy on Lipid Parameters in Patients with Type 2 Diabetes Mellitus (Diabetes Metab J2019;43:582–9)
    Tae Seo Sohn
    Diabetes & Metabolism Journal.2019; 43(6): 909.     CrossRef
  • An Age of Sodium-Glucose Cotransporter-2 Inhibitor Priority: Are We Ready?
    Ji A Seo
    Diabetes & Metabolism Journal.2019; 43(5): 578.     CrossRef
  • Association between Diabetes and the Use of Removable Dental Prostheses among the Korean Population
    Jae-Hyun Lee, Jung-Suk Han, Kyungdo Han, Su-Young Lee
    Journal of Korean Medical Science.2019;[Epub]     CrossRef
  • Metabolic Surgery and Diabetes Mellitus: Its Effects and Side Effects
    Mee Kyoung Kim
    The Journal of Korean Diabetes.2019; 20(4): 205.     CrossRef
Editorial
Obesity and Metabolic Syndrome
Changes in Metabolic Profile Over Time: Impact on the Risk of Diabetes
Yunjung Cho, Seung-Hwan Lee
Diabetes Metab J. 2019;43(4):407-409.   Published online August 20, 2019
DOI: https://doi.org/10.4093/dmj.2019.0141
  • 4,043 View
  • 42 Download
PDFPubReader   
Original Articles
Clinical Diabetes & Therapeutics
Asian Subpopulations May Exhibit Greater Cardiovascular Benefit from Long-Acting Glucagon-Like Peptide 1 Receptor Agonists: A Meta-Analysis of Cardiovascular Outcome Trials
Yu Mi Kang, Yun Kyung Cho, Jiwoo Lee, Seung Eun Lee, Woo Je Lee, Joong-Yeol Park, Ye-Jee Kim, Chang Hee Jung, Michael A. Nauck
Diabetes Metab J. 2019;43(4):410-421.   Published online December 27, 2018
DOI: https://doi.org/10.4093/dmj.2018.0070
  • 7,217 View
  • 150 Download
  • 21 Web of Science
  • 20 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   
Background

Based on reported results of three large cardiovascular outcome trials (CVOTs) of glucagon-like peptide 1 receptor agonists (GLP-1 RAs), we aimed to investigate the overall effect of GLP-1 RAs on major adverse cardiovascular events (MACEs) and to identify subpopulations exhibiting the greatest cardiovascular (CV) benefit.

Methods

Three CVOTs reporting effects of long-acting GLP-1 RAs were included: LEADER (liraglutide), SUSTAIN-6 (semaglutide), and EXSCEL (exenatide once weekly). In all studies, the primary endpoint was three-point MACE, comprising CV death, non-fatal myocardial infarction, and non-fatal stroke. Overall effect estimates were calculated as hazard ratios and 95% confidence intervals (CIs) using the random-effects model; subgroup analyses reported in the original studies were similarly analyzed.

Results

Overall, statistically significant risk reductions in MACE and CV death were observed. Subgroup analysis indicated a significant racial difference with respect to CV benefit (P for interaction <0.001), and more substantial risk reductions were observed in subjects of African origin (relative risk [RR], 0.78; 95% CI, 0.60 to 0.99) and in Asians (RR, 0.35; 95% CI, 0.09 to 1.32). However, post hoc analysis (Bonferroni method) revealed that only Asians exhibited a significantly greater CV benefit from treatment, compared with white subjects (P<0.0001).

Conclusion

Long-acting GLP-1 RAs reduced risks of MACE and CV deaths in high-risk patients with type 2 diabetes mellitus. Our findings of a particularly effective reduction in CV events with GLP-1 RA in Asian populations merits further exploration and dedicated trials in specific populations.

Citations

Citations to this article as recorded by  
  • Safety and Effectiveness of Dulaglutide in the Treatment of Type 2 Diabetes Mellitus: A Korean Real-World Post-Marketing Study
    Jeonghee Han, Woo Je Lee, Kyu Yeon Hur, Jae Hyoung Cho, Byung Wan Lee, Cheol-Young Park
    Diabetes & Metabolism Journal.2024; 48(3): 418.     CrossRef
  • Sex, racial, ethnic, and geographical disparities in major adverse cardiovascular outcome of glucagon-like peptide-1 receptor agonists among patients with and without diabetes mellitus: A meta-analysis of placebo-controlled randomized controlled trials
    Frederick Berro Rivera, Nathan Ross B. Bantayan, John Paul Aparece, Linnaeus Louisse A. Cruz, John Vincent Magallong, Polyn Luz Pine, Anne Mira Nicca Idian-Javier, Grace Nooriza O. Lumbang, Edgar V. Lerma, Kyla M. Lara-Breitinger, Martha Gulati, Krishnasw
    Journal of Clinical Lipidology.2024; 18(4): e588.     CrossRef
  • A randomized, double‐blind trial assessing the efficacy and safety of two doses of dulaglutide in Japanese participants with type 2 diabetes (AWARD‐JPN)
    Tomoaki Morioka, Masakazu Takeuchi, Akichika Ozeki, Masanori Emoto
    Diabetes, Obesity and Metabolism.2024; 26(8): 3167.     CrossRef
  • Coronary Artery Disease in South Asian Patients: Cardiovascular Risk Factors, Pathogenesis and Treatments
    Vincenzo Sucato, Giuseppe Coppola, Girolamo Manno, Giuseppe Vadalà, Giuseppina Novo, Egle Corrado, Alfredo Ruggero Galassi
    Current Problems in Cardiology.2023; 48(8): 101228.     CrossRef
  • Retrospective Analysis of the Effectiveness of Oral Semaglutide in Type 2 Diabetes Mellitus and Its Effect on Cardiometabolic Parameters in Japanese Clinical Settings
    Hodaka Yamada, Masashi Yoshida, Shunsuke Funazaki, Jun Morimoto, Shiori Tonezawa, Asuka Takahashi, Shuichi Nagashima, Kimura Masahiko, Otsuka Kiyoshi, Kazuo Hara
    Journal of Cardiovascular Development and Disease.2023; 10(4): 176.     CrossRef
  • Efficacy of treatment with glucagon-like peptide receptor agonists-1 in Asian patients with type 2 diabetes mellitus
    L. Yu. Khamnueva, L. S. Andreeva
    Problems of Endocrinology.2023; 69(2): 38.     CrossRef
  • Role of diabetes in stroke: Recent advances in pathophysiology and clinical management
    Sian A. Bradley, Kevin J. Spring, Roy G. Beran, Dimitrios Chatzis, Murray C. Killingsworth, Sonu M. M. Bhaskar
    Diabetes/Metabolism Research and Reviews.2022;[Epub]     CrossRef
  • Obesity Pillars Roundtable: Obesity and East Asians
    Harold Edward Bays, Jennifer Ng, Jeffrey Sicat, Michelle Look
    Obesity Pillars.2022; 2: 100011.     CrossRef
  • Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations
    Calvin Ke, K. M. Venkat Narayan, Juliana C. N. Chan, Prabhat Jha, Baiju R. Shah
    Nature Reviews Endocrinology.2022; 18(7): 413.     CrossRef
  • Effect of race on cardiometabolic responses to once-weekly exenatide: insights from the Exenatide Study of Cardiovascular Event Lowering (EXSCEL)
    Timothy M. E. Davis, Anna Giczewska, Yuliya Lokhnygina, Robert J. Mentz, Naveed Sattar, Rury R. Holman
    Cardiovascular Diabetology.2022;[Epub]     CrossRef
  • Generalizability of the Results of Cardiovascular Outcome Trials of Glucagon-Like Peptide 1 Receptor Agonists in Chinese Patients with Type 2 Diabetes Mellitus
    Xiaoling Cai, Linong Ji
    Diabetes Therapy.2021; 12(7): 1861.     CrossRef
  • Current trends in epidemiology of cardiovascular disease and cardiovascular risk management in type 2 diabetes
    Jae-Seung Yun, Seung-Hyun Ko
    Metabolism.2021; 123: 154838.     CrossRef
  • Sex and ethnic differences in the cardiovascular complications of type 2 diabetes
    Jian L. Yeo, Emer M. Brady, Gerry P. McCann, Gaurav S. Gulsin
    Therapeutic Advances in Endocrinology and Metabolism.2021; 12: 204201882110342.     CrossRef
  • Efficacy and Safety of GLP-1 Receptor Agonists in Patients With Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis
    Yuan Zhu, Jiao Xu, Dong Zhang, Xingyu Mu, Yi Shi, Shangtao Chen, Zengxiang Wu, Shuangqing Li
    Frontiers in Endocrinology.2021;[Epub]     CrossRef
  • Efficacy and safety of dulaglutide in type 2 diabetes patients in endocrinology clinics of Islamabad, Pakistan
    Matiullah Kamin, SajjadAli Khan, UmarYousaf Raja, Osama Ishtiaq, Asmara Malik, Tejhmal Rehman, MuhammadUmar Wahab
    Indian Journal of Endocrinology and Metabolism.2021; 25(5): 456.     CrossRef
  • Type 2 Diabetes and Atherosclerotic Cardiovascular Disease in South Asians: a Unique Population with a Growing Challenge
    Afreen I. Shariff, Nitya Kumar, William S. Yancy, Leonor Corsino
    Current Diabetes Reports.2020;[Epub]     CrossRef
  • Antihypertensive and Renal Mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) Inhibitors
    Christopher S. Wilcox
    Hypertension.2020; 75(4): 894.     CrossRef
  • Subpopulation Differences in the Cardiovascular Efficacy of Long-Acting Glucagon-Like Peptide 1 Receptor Agonists in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis
    Liyun He, Na Yang, Lingling Xu, Fan Ping, Wei Li, Yuxiu Li, Huabing Zhang
    Diabetes Therapy.2020; 11(9): 2121.     CrossRef
  • 2020 Consensus of Taiwan Society of Cardiology on the pharmacological management of patients with type 2 diabetes and cardiovascular diseases
    Chern-En Chiang, Kwo-Chang Ueng, Ting-Hsing Chao, Tsung-Hsien Lin, Yih-Jer Wu, Kang-Ling Wang, Shih-Hsien Sung, Hung-I Yeh, Yi-Heng Li, Ping-Yen Liu, Kuan-Cheng Chang, Kou-Gi Shyu, Jin-Long Huang, Cheng-Dao Tsai, Huei-Fong Hung, Ming-En Liu, Tze-Fan Chao,
    Journal of the Chinese Medical Association.2020; 83(7): 587.     CrossRef
  • Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease
    Kyung-Soo Kim, Byung-Wan Lee
    Clinical and Molecular Hepatology.2020; 26(4): 430.     CrossRef
Clinical Diabetes & Therapeutics
Additional Effect of Dietary Fiber in Patients with Type 2 Diabetes Mellitus Using Metformin and Sulfonylurea: An Open-Label, Pilot Trial
Seung-Eun Lee, Yongbin Choi, Ji Eun Jun, You-Bin Lee, Sang-Man Jin, Kyu Yeon Hur, Gwang Pyo Ko, Moon-Kyu Lee
Diabetes Metab J. 2019;43(4):422-431.   Published online April 23, 2019
DOI: https://doi.org/10.4093/dmj.2018.0090
  • 6,582 View
  • 90 Download
  • 9 Web of Science
  • 8 Crossref
AbstractAbstract PDFPubReader   
Background

Metformin, sulfonylurea, and dietary fiber are known to affect gut microbiota in patients with type 2 diabetes mellitus (T2DM). This open and single-arm pilot trial investigated the effects of the additional use of fiber on glycemic parameters, insulin, incretins, and microbiota in patients with T2DM who had been treated with metformin and sulfonylurea.

Methods

Participants took fiber for 4 weeks and stopped for the next 4 weeks. Glycemic parameters, insulin, incretins during mixed-meal tolerance test (MMTT), lipopolysaccharide (LPS) level, and fecal microbiota were analyzed at weeks 0, 4, and 8. The first tertile of difference in glucose area under the curve during MMTT between weeks 0 and 4 was defined as ‘responders’ and the third as ‘nonresponders,’ respectively.

Results

In all 10 participants, the peak incretin levels during MMTT were higher and LPS were lower at week 4 as compared with at baseline. While the insulin sensitivity of the ‘responders’ increased at week 4, that of the ‘nonresponders’ showed opposite results. However, the results were not statistically significant. In all participants, metabolically unfavorable microbiota decreased at week 4 and were restored at week 8. At baseline, metabolically hostile bacteria were more abundant in the ‘nonresponders.’ In ‘responders,’ Roseburia intestinalis increased at week 4.

Conclusion

While dietary fiber did not induce additional changes in glycemic parameters, it showed a trend of improvement in insulin sensitivity in ‘responders.’ Even if patients are already receiving diabetes treatment, the additional administration of fiber can lead to additional benefits in the treatment of diabetes.

Citations

Citations to this article as recorded by  
  • Advances in the mechanism of metformin with wide-ranging effects on regulation of the intestinal microbiota
    Yue Wang, Xianxian Jia, Bin Cong
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • The effects of prebiotics on gastrointestinal side effects of metformin in youth: A pilot randomized control trial in youth-onset type 2 diabetes
    Sydney A. Dixon, Sidharth Mishra, Katrina B. Dietsche, Shalini Jain, Lilian Mabundo, Michael Stagliano, Andrea Krenek, Amber Courville, Shanna Yang, Sara A. Turner, Abby G. Meyers, Doris E. Estrada, Hariom Yadav, Stephanie T. Chung
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • The impact of dietary, surgical, and pharmacological interventions on gut microbiota in individuals with diabetes mellitus: A systematic review
    Patricia M. Bock, Andreza F. Martins, Rafaela Ramalho, Gabriela H. Telo, Gabriel Leivas, Clara K. Maraschin, Beatriz D. Schaan
    Diabetes Research and Clinical Practice.2022; 189: 109944.     CrossRef
  • Assessment of the safety and probiotic properties of Roseburia intestinalis: A potential “Next Generation Probiotic”
    Chao Zhang, Kejia Ma, Kai Nie, Minzi Deng, Weiwei Luo, Xing Wu, Yujun Huang, Xiaoyan Wang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • The Effect of Prebiotics and Oral Anti-Diabetic Agents on Gut Microbiome in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis of Randomised Controlled Trials
    Omorogieva Ojo, Xiaohua Wang, Osarhumwese Osaretin Ojo, Joanne Brooke, Yiqing Jiang, Qingqing Dong, Trevor Thompson
    Nutrients.2022; 14(23): 5139.     CrossRef
  • The Effect of Dietary Interventions on Chronic Inflammatory Diseases in Relation to the Microbiome: A Systematic Review
    Carlijn A. Wagenaar, Marieke van de Put, Michelle Bisschops, Wendy Walrabenstein, Catharina S. de Jonge, Hilde Herrema, Dirkjan van Schaardenburg
    Nutrients.2021; 13(9): 3208.     CrossRef
  • The Role of Dietary Fibre in Modulating Gut Microbiota Dysbiosis in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials
    Omorogieva Ojo, Qian-Qian Feng, Osarhumwese Osaretin Ojo, Xiao-Hua Wang
    Nutrients.2020; 12(11): 3239.     CrossRef
  • High Fiber and Beta Carotene from Sweet Potatoes and Pumpkin Improve Insulin Resistance by Inhibition of Sterol Regulatory Binding Protein 1c in Liver of Hypertriglyceridemic Rats
    Sunarti Sunarti, Umar Santoso, Abrory Agus Cahya Pramana, Emy Huriyati, Dianandha Septiana Rubi
    Open Access Macedonian Journal of Medical Sciences.2020; 8(A): 898.     CrossRef
Clinical Diabetes & Therapeutics
Effectiveness and Safety of Adding Basal Insulin Glargine in Patients with Type 2 Diabetes Mellitus Exhibiting Inadequate Response to Metformin and DPP-4 Inhibitors with or without Sulfonylurea
Yu Mi Kang, Chang Hee Jung, Seung-Hwan Lee, Sang-Wook Kim, Kee-Ho Song, Sin Gon Kim, Jae Hyeon Kim, Young Min Cho, Tae Sun Park, Bon Jeong Ku, Gwanpyo Koh, Dol Mi Kim, Byung-Wan Lee, Joong-Yeol Park
Diabetes Metab J. 2019;43(4):432-446.   Published online June 19, 2019
DOI: https://doi.org/10.4093/dmj.2018.0092
  • 6,189 View
  • 98 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   
Background

We aimed to investigate the effectiveness and safety of adding basal insulin to initiating dipeptidyl peptidase-4 (DPP-4) inhibitor and metformin and/or sulfonylurea (SU) in achieving the target glycosylated hemoglobin (HbA1c) in patients with type 2 diabetes mellitus (T2DM).

Methods

This was a single-arm, multicenter, 24-week, open-label, phase 4 study in patients with inadequately controlled (HbA1c ≥7.5%) T2DM despite the use of DPP-4 inhibitor and metformin. A total of 108 patients received insulin glargine while continuing oral antidiabetic drugs (OADs). The primary efficacy endpoint was the percentage of subjects achieving HbA1c ≤7.0%. Other glycemic profiles were also evaluated, and the safety endpoints were adverse events (AEs) and hypoglycemia.

Results

The median HbA1c at baseline (8.9%; range, 7.5% to 11.1%) decreased to 7.6% (5.5% to 11.7%) at 24 weeks. Overall, 31.7% subjects (n=33) achieved the target HbA1c level of ≤7.0%. The mean differences in body weight and fasting plasma glucose were 1.2±3.4 kg and 56.0±49.8 mg/dL, respectively. Hypoglycemia was reported in 36 subjects (33.3%, 112 episodes), all of which were fully recovered. There was no serious AE attributed to insulin glargine. Body weight change was significantly different between SU users and nonusers (1.5±2.5 kg vs. −0.9±6.0 kg, P=0.011).

Conclusion

The combination add-on therapy of insulin glargine, on metformin and DPP-4 inhibitors with or without SU was safe and efficient in reducing HbA1c levels and thus, is a preferable option in managing T2DM patients exhibiting dysglycemia despite the use of OADs.

Citations

Citations to this article as recorded by  
  • Glycaemic control with add‐on thiazolidinedione or a sodium‐glucose co‐transporter‐2 inhibitor in patients with type 2 diabetes after the failure of an oral triple antidiabetic regimen: A 24‐week, randomized controlled trial
    Jaehyun Bae, Ji Hye Huh, Minyoung Lee, Yong‐Ho Lee, Byung‐Wan Lee
    Diabetes, Obesity and Metabolism.2021; 23(2): 609.     CrossRef
  • Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease
    Kyung-Soo Kim, Byung-Wan Lee
    Clinical and Molecular Hepatology.2020; 26(4): 430.     CrossRef
Clinical Diabetes & Therapeutics
Association between Serum Selenium Level and the Presence of Diabetes Mellitus: A Meta-Analysis of Observational Studies
Juno Kim, Hye Soo Chung, Min-Kyu Choi, Yong Kyun Roh, Hyung Joon Yoo, Jung Hwan Park, Dong Sun Kim, Jae Myung Yu, Shinje Moon
Diabetes Metab J. 2019;43(4):447-460.   Published online January 2, 2019
DOI: https://doi.org/10.4093/dmj.2018.0123
  • 7,004 View
  • 104 Download
  • 35 Web of Science
  • 36 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   
Background

Epidemiological studies have suggested an association between selenium (Se) and diabetes mellitus (DM). However, different studies have reported conflicting results. Therefore, we performed a comprehensive meta-analysis to clarify the impact of Se on DM.

Methods

We searched the PubMed database for studies on the association between Se and DM from inception to June 2018.

Results

Twenty articles evaluating 47,930 participants were included in the analysis. The meta-analysis found that high levels of Se were significantly associated with the presence of DM (pooled odds ratios [ORs], 1.88; 95% confidence interval [CI], 1.44 to 2.45). However, significant heterogeneity was found (I2=82%). Subgroup analyses were performed based on the Se measurement methods used in each study. A significant association was found between high Se levels and the presence of DM in the studies that used blood (OR, 2.17; 95% CI, 1.60 to 2.93; I2=77%), diet (OR, 1.61; 95% CI, 1.10 to 2.36; I2=0%), and urine (OR, 1.49; 95% CI, 1.02 to 2.17; I2=0%) as samples to estimate Se levels, but not in studies on nails (OR, 1.24; 95% CI, 0.52 to 2.98; I2=91%). Because of significant heterogeneity in the studies with blood, we conducted a sensitivity analysis and tested the publication bias. The results were consistent after adjustment based on the sensitivity analysis as well as the trim and fill analysis for publication bias.

Conclusion

This meta-analysis demonstrates that high levels of Se are associated with the presence of DM. Further prospective and randomized controlled trials are warranted to elucidate the link better.

Citations

Citations to this article as recorded by  
  • Selenium Species in Diabetes Mellitus Type 2
    Krystyna Pyrzynska, Aleksandra Sentkowska
    Biological Trace Element Research.2024; 202(7): 2993.     CrossRef
  • Increased Expression of PHGDH Under High-Selenium Stress In Vivo
    Qin Wang, Jianrong Wang, Xue Zhang, Yiqun Liu, Feng Han, Xuesong Xiang, Yanbin Guo, Zhen-wu Huang
    Biological Trace Element Research.2024; 202(11): 5145.     CrossRef
  • Dosage-effect of selenium supplementation on blood glucose and oxidative stress in type 2 diabetes mellitus and normal mice
    Xiaxia Cai, Zhuo Hu, Mingyuan Zhang, Qinyu Dang, Qian Yang, Xiaoyan Zhao, Yandi Zhu, Yadi Zhang, Yuchen Wei, Haiqin Fang, Huanling Yu
    Journal of Trace Elements in Medicine and Biology.2024; 83: 127410.     CrossRef
  • Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment
    Katarzyna Napiórkowska-Baran, Paweł Treichel, Marta Czarnowska, Magdalena Drozd, Kinga Koperska, Agata Węglarz, Oskar Schmidt, Samira Darwish, Bartłomiej Szymczak, Zbigniew Bartuzi
    International Journal of Molecular Sciences.2024; 25(7): 3769.     CrossRef
  • The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System
    Rebecka A. Sadler, Bonnie A. Mallard, Umesh K. Shandilya, Mohammed A. Hachemi, Niel A. Karrow
    Nutrients.2024; 16(19): 3324.     CrossRef
  • Biological Activity of Selenium and Its Impact on Human Health
    Giuseppe Genchi, Graziantonio Lauria, Alessia Catalano, Maria Stefania Sinicropi, Alessia Carocci
    International Journal of Molecular Sciences.2023; 24(3): 2633.     CrossRef
  • The Role of Selenium and Manganese in the Formation, Diagnosis and Treatment of Cervical, Endometrial and Ovarian Cancer
    Anna Golara, Mateusz Kozłowski, Paweł Guzik, Sebastian Kwiatkowski, Aneta Cymbaluk-Płoska
    International Journal of Molecular Sciences.2023; 24(13): 10887.     CrossRef
  • Association of Selenium Intake and Selenium Concentrations with Risk of Type 2 Diabetes in Adults: A Narrative Review
    Maha Alharithy, Nora Alafif
    Metabolites.2023; 13(6): 767.     CrossRef
  • Selenium-Containing Organic Fertilizer Application Affects Yield, Quality, and Distribution of Selenium in Wheat
    Peng Chen, Hiba Shaghaleh, Yousef Alhaj Hamoud, Jing Wang, Wenxia Pei, Xianfu Yuan, Jianjian Liu, Cece Qiao, Wenhui Xia, Jianfei Wang
    Life.2023; 13(9): 1849.     CrossRef
  • A Comprehensive Review on Selenium and Its Effects on Human Health and Distribution in Middle Eastern Countries
    Marek Kieliszek, Iqra Bano, Hamed Zare
    Biological Trace Element Research.2022; 200(3): 971.     CrossRef
  • Selenium and clarithromycin loaded PLA-GO composite wound dressings by electrospinning method
    Fatih Ciftci, Sumeyra Ayan, Nilüfer Duygulu, Yasemin Yilmazer, Zeynep Karavelioglu, Meyrem Vehapi, Rabia Cakır Koc, Mustafa Sengor, Hakan Yılmazer, Didem Ozcimen, Oguzhan Gunduz, Cem Bulent Ustundag
    International Journal of Polymeric Materials and Polymeric Biomaterials.2022; 71(12): 898.     CrossRef
  • The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities
    Holger Steinbrenner, Leonidas H. Duntas, Margaret P. Rayman
    Redox Biology.2022; 50: 102236.     CrossRef
  • The Role of Selenium in Pathologies: An Updated Review
    Giulia Barchielli, Antonella Capperucci, Damiano Tanini
    Antioxidants.2022; 11(2): 251.     CrossRef
  • Selenium and Selenoproteins at the Intersection of Type 2 Diabetes and Thyroid Pathophysiology
    Francesca Gorini, Cristina Vassalle
    Antioxidants.2022; 11(6): 1188.     CrossRef
  • Higher selenium was associated with higher risk of diabetes: Consistent evidence from longitudinal and cross-sectional studies based on nail and serum selenium measures
    Ranqi Shao, Liqin Su, Li Li, Jinghuan Wu, Xiaohong He, Deqian Mao, Yibin Cheng, Jingyi Liu, Chen Chen, Yinlong Jin, Sujuan Gao
    Science of The Total Environment.2022; 840: 156618.     CrossRef
  • The Roles and Pathogenesis Mechanisms of a Number of Micronutrients in the Prevention and/or Treatment of Chronic Hepatitis, COVID-19 and Type-2 Diabetes Mellitus
    Khalid M. Sumaily
    Nutrients.2022; 14(13): 2632.     CrossRef
  • Associations between Circulating SELENOP Level and Disorders of Glucose and Lipid Metabolism: A Meta-Analysis
    Ruirui Yu, Zhoutian Wang, Miaomiao Ma, Ping Xu, Longjian Liu, Alexey A. Tinkov, Xin Gen Lei, Ji-Chang Zhou
    Antioxidants.2022; 11(7): 1263.     CrossRef
  • Cross-Sectional Association of Blood Selenium with Glycemic Biomarkers among U.S. Adults with Normoglycemia in the National Health and Nutrition Examination Survey 2013–2016
    Jingli Yang, En Chen, Cheukling Choi, Kayue Chan, Qinghua Yang, Juwel Rana, Bo Yang, Chuiguo Huang, Aimin Yang, Kenneth Lo
    Nutrients.2022; 14(19): 3972.     CrossRef
  • Plasma and vitreous selenium concentrations in patients with type 2 diabetes and diabetic retinopathy
    Chunmiao Wang, Ruijin Ran, Xin Jin, Xiaohong Zhu
    Medicine.2022; 101(39): e30877.     CrossRef
  • Emerging roles of selenium on metabolism and type 2 diabetes
    Jiuxiang Zhao, Hong Zou, Yanling Huo, Xiaoyi Wei, Yu Li
    Frontiers in Nutrition.2022;[Epub]     CrossRef
  • Selenium: Role in preserving and improving health and preventing disease
    Goran Belojević
    Galenika Medical Journal.2022; 1(4): 90.     CrossRef
  • A comprehensive review on the neuropathophysiology of selenium
    Mohammad Naderi, Pankaj Puar, Mahtab Zonouzi-Marand, Douglas P. Chivers, Som Niyogi, Raymond W.M. Kwong
    Science of The Total Environment.2021; 767: 144329.     CrossRef
  • Dietary selenium intake and risk of hospitalization for type 2 diabetes in the Moli-sani study cohort
    Marco Vinceti, Marialaura Bonaccio, Tommaso Filippini, Simona Costanzo, Lauren A. Wise, Augusto Di Castelnuovo, Emilia Ruggiero, Mariarosaria Persichillo, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Licia Iacoviello
    Nutrition, Metabolism and Cardiovascular Diseases.2021; 31(6): 1738.     CrossRef
  • A systematic review and dose-response meta-analysis of exposure to environmental selenium and the risk of type 2 diabetes in nonexperimental studies
    Marco Vinceti, Tommaso Filippini, Lauren A. Wise, Kenneth J. Rothman
    Environmental Research.2021; 197: 111210.     CrossRef
  • Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity
    Dominika Radomska, Robert Czarnomysy, Dominik Radomski, Anna Bielawska, Krzysztof Bielawski
    Nutrients.2021; 13(5): 1649.     CrossRef
  • Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases
    Rannapaula Lawrynhuk Urbano Ferreira, Karine Cavalcanti Maurício Sena-Evangelista, Eduardo Pereira de Azevedo, Francisco Irochima Pinheiro, Ricardo Ney Cobucci, Lucia Fatima Campos Pedrosa
    Frontiers in Nutrition.2021;[Epub]     CrossRef
  • Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization?
    Jia-Yue Duan, Xiao Lin, Feng Xu, Su-Kang Shan, Bei Guo, Fu-Xing-Zi Li, Yi Wang, Ming-Hui Zheng, Qiu-Shuang Xu, Li-Min Lei, Wen-Lu Ou-Yang, Yun-Yun Wu, Ke-Xin Tang, Ling-Qing Yuan
    Frontiers in Cell and Developmental Biology.2021;[Epub]     CrossRef
  • Selenium Intake and Glycemic Control in Young Adults With Normal-Weight Obesity Syndrome
    Acsa de Castro Santos, Anna Flavia Ferreira Passos, Luciana Carla Holzbach, Cristiane Cominetti
    Frontiers in Nutrition.2021;[Epub]     CrossRef
  • Development and Therapeutic Potential of Selenazo Compounds
    Ana Carolina Ruberte, Carmen Sanmartin, Carlos Aydillo, Arun K. Sharma, Daniel Plano
    Journal of Medicinal Chemistry.2020; 63(4): 1473.     CrossRef
  • Selenium in thyroid disorders — essential knowledge for clinicians
    Kristian Hillert Winther, Margaret Philomena Rayman, Steen Joop Bonnema, Laszlo Hegedüs
    Nature Reviews Endocrinology.2020; 16(3): 165.     CrossRef
  • Safety of selenium‐enriched biomass of Yarrowia lipolytica as a novel food pursuant to Regulation (EU) 2015/2283
    Dominique Turck, Jacqueline Castenmiller, Stefaan De Henauw, Karen Ildico Hirsch‐Ernst, John Kearney, Alexandre Maciuk, Inge Mangelsdorf, Harry J McArdle, Androniki Naska, Carmen Pelaez, Kristina Pentieva, Alfonso Siani, Frank Thies, Sophia Tsabouri, Marc
    EFSA Journal.2020;[Epub]     CrossRef
  • The Association of Circulating Selenium Concentrations with Diabetes Mellitus


    Xiao-Long Liao, Zhong-Hua Wang, Xiu-Na Liang, Jun Liang, Xue-Biao Wei, Shou-Hong Wang, Wei-Xin Guo
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2020; Volume 13: 4755.     CrossRef
  • A 2018 European Thyroid Association Survey on the Use of Selenium Supplementation in Hashimoto’s Thyroiditis
    Kristian Hillert Winther, Enrico Papini, Roberto Attanasio, Roberto Negro, Laszlo Hegedüs
    European Thyroid Journal.2020; 9(2): 99.     CrossRef
  • Systems Biology of Selenium and Complex Disease
    Huimin Ying, Yan Zhang
    Biological Trace Element Research.2019; 192(1): 38.     CrossRef
  • Effectiveness and safety of selenium supplementation for type 2 diabetes mellitus in adults: a systematic review of randomised controlled trials
    A. Stróżyk, Z. Osica, J. D. Przybylak, M. Kołodziej, B. M. Zalewski, B. Mrozikiewicz‐Rakowska, H. Szajewska
    Journal of Human Nutrition and Dietetics.2019; 32(5): 635.     CrossRef
  • Selenium and Health: An Update on the Situation in the Middle East and North Africa
    Sohayla A. Z. Ibrahim, Abdelhamid Kerkadi, Abdelali Agouni
    Nutrients.2019; 11(7): 1457.     CrossRef
Epidemiology
Lower Leg Fat Depots Are Associated with Albuminuria Independently of Obesity, Insulin Resistance, and Metabolic Syndrome (Korea National Health and Nutrition Examination Surveys 2008 to 2011)
Eugene Han, Nan Hee Cho, Mi Kyung Kim, Hye Soon Kim
Diabetes Metab J. 2019;43(4):461-473.   Published online March 7, 2019
DOI: https://doi.org/10.4093/dmj.2018.0081
  • 5,634 View
  • 40 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDFPubReader   
Background

Although the involvement of obesity in metabolic disorders is well known, leg fat depot influences on albuminuria have not been determined.

Methods

This population-based, cross-sectional study used a nationally representative sample of 2,076 subjects aged ≥20 years from the Korea National Health and Nutrition Examination Surveys of 2008 to 2011. The ratio of leg fat to total fat (LF/TF ratio) was assessed by dual X-ray absorptiometry, and albuminuria was defined as more than one positive dipstick test or an albumin-to-creatinine ratio of ≥30 mg/g.

Results

Individuals whose LF/TF ratio was in the lowest tertile showed a higher proportion of albuminuria than those in the highest tertile (odds ratio [OR], 2.82; 95% confidence interval [CI], 2.01 to 3.96; P<0.001). This association was observed in both sexes, all age groups, and all subgroups stratified by body mass index, waist circumference, homeostasis model assessments of insulin resistance, and the presence of metabolic syndrome (all, P<0.05). Multiple logistic regression analyses also demonstrated that the lowest LF/TF ratio was independently associated with albuminuria risk (OR, 1.55 to 2.16; all, P<0.05). In addition, the risk of albuminuria was higher in sarcopenic individuals with lower LF/TF ratios than in the highest LF/TF ratio subjects without sarcopenia (OR, 3.73; 95% CI, 2.26 to 6.13).

Conclusion

A lower LF/TF ratio was associated with an increased risk of albuminuria independent of obesity, insulin resistance, and metabolic syndrome, and when combined with sarcopenia, the albuminuria risk synergistically increased. Hence, our findings may have implications to improve risk stratification and recommendations on body fat distribution in the general population.

Citations

Citations to this article as recorded by  
  • Efficacy and safety of evogliptin in patients with type 2 diabetes and non‐alcoholic fatty liver disease: A multicentre, double‐blind, randomized, comparative trial
    Eugene Han, Ji Hye Huh, Eun Y. Lee, Ji C. Bae, Sung W. Chun, Sung H. Yu, Soo H. Kwak, Kyong S. Park, Byung‐Wan Lee
    Diabetes, Obesity and Metabolism.2022; 24(4): 752.     CrossRef
  • Muscle fat contents rather than muscle mass determines nonalcoholic steatohepatitis and liver fibrosis in patients with severe obesity
    Eugene Han, Mi Kyung Kim, Hye Won Lee, Seungwan Ryu, Hye Soon Kim, Byoung Kuk Jang, Youngsung Suh
    Obesity.2022; 30(12): 2440.     CrossRef
  • Albuminuria Is Associated with Steatosis Burden in Patients with Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease
    Eugene Han, Mi Kyung Kim, Byoung Kuk Jang, Hye Soon Kim
    Diabetes & Metabolism Journal.2021; 45(5): 698.     CrossRef
Epidemiology
Plasma Fetuin-A Levels and Risk of Type 2 Diabetes Mellitus in A Chinese Population: A Nested Case-Control Study
Yeli Wang, Woon-Puay Koh, Majken K. Jensen, Jian-Min Yuan, An Pan
Diabetes Metab J. 2019;43(4):474-486.   Published online March 20, 2019
DOI: https://doi.org/10.4093/dmj.2018.0171
  • 5,333 View
  • 86 Download
  • 9 Web of Science
  • 9 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   
Background

Fetuin-A is a hepatokine that involved in the pathogenesis of insulin resistance. Previous epidemiological studies have found a positive association between blood fetuin-A and type 2 diabetes mellitus (T2DM) risk among Caucasians and African Americans. We aimed to investigate the prospective relationship between fetuin-A and T2DM in an Asian population for the first time.

Methods

A nested case-control study was established within a prospective cohort of Chinese living in Singapore. At blood collection (1999 to 2004), all participants were free of diagnosed T2DM and aged 50 to 79 years. At subsequent follow-up (2006 to 2010), 558 people reported to have T2DM and were classified as incident cases, and 558 controls were randomly chosen from the participants who did not develop T2DM to match with cases on age, sex, dialect group, and date of blood collection. Plasma fetuin-A levels were measured retrospectively in cases and controls using samples collected at baseline. Conditional logistic regression models were used to compute the odds ratio (OR) and 95% confidence interval (CI). Restricted cubic spline analysis was used to examine a potential non-linear association between fetuin-A levels and T2DM risk.

Results

Compared with those in the lowest fetuin-A quintile, participants in the highest quintile had a two-fold increased risk of developing T2DM (OR, 2.06; 95% CI, 1.21 to 3.51). A non-linear association was observed (P nonlinearity=0.005), where the association between fetuin-A levels and T2DM risk plateaued at plasma concentrations around 830 µg/mL.

Conclusion

There is a positive association between plasma fetuin-A levels and risk of developing T2DM in this Chinese population.

Citations

Citations to this article as recorded by  
  • The predicted mechanisms and evidence of probiotics on type 2 diabetes mellitus (T2DM)
    Ousman Bajinka, Kodzovi Sylvain Dovi, Lucette Simbilyabo, Ishmail Conteh, Yurong Tan
    Archives of Physiology and Biochemistry.2024; 130(4): 475.     CrossRef
  • Type 2 diabetes and gut health - Narrative review
    Janeline Lunghar, A. Thahira Banu
    International Journal of Noncommunicable Diseases.2024; 9(1): 4.     CrossRef
  • The significance and prognostic, diagnostic, and therapeutic potential of selected paracrine factors in type 2 diabetes
    Mariusz Kuczera, Klaudia Stocerz, Arkadiusz Sokal, Magdalena Glin, Kinga Orlińska, Jan Siwiec, Paweł Olczyk
    Annales Academiae Medicae Silesiensis.2024; 78: 179.     CrossRef
  • Multiplexed measurements of salivary fetuin-A, insulin, and adiponectin as potential non-invasive biomarkers in childhood obesity
    Vaithinathan Selvaraju, Jeganathan R. Babu, Thangiah Geetha
    Cytokine.2022; 153: 155843.     CrossRef
  • Recent Developments in Biomarkers for Diagnosis and Screening of Type 2 Diabetes Mellitus
    Margarita Ortiz-Martínez, Mirna González-González, Alexandro J. Martagón, Victoria Hlavinka, Richard C. Willson, Marco Rito-Palomares
    Current Diabetes Reports.2022; 22(3): 95.     CrossRef
  • Serum Fetuin-A and Risk of Gestational Diabetes Mellitus: An Observational Study and Mendelian Randomization Analysis
    Ping Wu, Yi Wang, Yi Ye, Xue Yang, Qi Lu, Jiaying Yuan, Li Zha, Yan Liu, Xingyue Song, Shijiao Yan, Ying Wen, Xiaorong Qi, Chun-Xia Yang, Yixin Wang, Gang Liu, Chuanzhu Lv, Xiong-Fei Pan, An Pan
    The Journal of Clinical Endocrinology & Metabolism.2022; 107(9): e3841.     CrossRef
  • Hepatokines as a Molecular Transducer of Exercise
    Dae Yun Seo, Se Hwan Park, Jubert Marquez, Hyo-Bum Kwak, Tae Nyun Kim, Jun Hyun Bae, Jin-Ho Koh, Jin Han
    Journal of Clinical Medicine.2021; 10(3): 385.     CrossRef
  • Serum Fetuin‐B Levels Are Elevated in Women with Metabolic Syndrome and Associated with Increased Oxidative Stress
    Shiyao Xue, Hongdong Han, Shunli Rui, Mengliu Yang, Yizhou Huang, Bin Zhan, Shan Geng, Hua Liu, Chen Chen, Gangyi Yang, Ling Li, Colin Murdoch
    Oxidative Medicine and Cellular Longevity.2021;[Epub]     CrossRef
  • CD44, a Predominant Protein in Methylglyoxal-Induced Secretome of Muscle Cells, is Elevated in Diabetic Plasma
    Shakuntala Bai, Arvindkumar H. Chaurasiya, Reema Banarjee, Prachi B. Walke, Faraz Rashid, Ambika G. Unnikrishnan, Mahesh J. Kulkarni
    ACS Omega.2020; 5(39): 25016.     CrossRef
Epidemiology
Article image
Diabetes Fact Sheets in Korea, 2018: An Appraisal of Current Status
Bo-Yeon Kim, Jong Chul Won, Jae Hyuk Lee, Hun-Sung Kim, Jung Hwan Park, Kyoung Hwa Ha, Kyu Chang Won, Dae Jung Kim, Kyong Soo Park
Diabetes Metab J. 2019;43(4):487-494.   Published online July 17, 2019
DOI: https://doi.org/10.4093/dmj.2019.0067
  • 12,649 View
  • 191 Download
  • 101 Web of Science
  • 104 Crossref
AbstractAbstract PDFPubReader   
Background

The objective of this study was to investigate the prevalence, management, and comorbidities of diabetes among Korean adults aged 30 years and older.

Methods

This study used 2013 to 2016 data from the Korea National Health and Nutrition Examination Survey, a nationally-representative survey of the Korean population. Diabetes was defined as fasting glucose ≥126 mg/dL, current use of antidiabetic medication, a previous history of diabetes, or glycosylated hemoglobin (HbA1c) ≥6.5%.

Results

In 2016, 14.4% (approximately 5.02 million) of Korean adults had diabetes. The prevalence of impaired fasting glucose was 25.3% (8.71 million). From 2013 to 2016, the awareness, control, and treatment rates for diabetes were 62.6%, 56.7%, and 25.1%, respectively. People with diabetes had the following comorbidities: obesity (50.4%), abdominal obesity (47.8%), hypertension (55.3%), and hypercholesterolemia (34.9%). The 25.1%, 68.4%, and 44.2% of people with diabetes achieved HbA1c <6.5%, blood pressure <140/85 mm Hg, and low density lipoprotein cholesterol <100 mg/dL. Only 8.4% of people with diabetes had good control of all three targets.

Conclusion

This study confirms that diabetes is as an important public health problem. Efforts should be made to increase awareness, detection, and comprehensive management of diabetes to reduce diabetes-related morbidity and mortality.

Citations

Citations to this article as recorded by  
  • Cardiovascular safety of evogliptin dual and triple therapy in patients with type 2 diabetes: a nationwide cohort study
    Sohee Park, Han Eol Jeong, In-Sun Oh, Sangmo Hong, Sung Hoon Yu, Chang Beom Lee, Ju-Young Shin
    BMJ Open.2024; 14(4): e077084.     CrossRef
  • Gamma‐glutamyl transferase and the risk of all‐cause and disease‐specific mortality in patients with diabetes: A nationwide cohort study
    Goh Eun Chung, Su‐Min Jeong, Su Jong Yu, Jeong‐Ju Yoo, Yuri Cho, Kyu‐na Lee, Dong Wook Shin, Yoon Jun Kim, Jung‐Hwan Yoon, Kyungdo Han, Eun Ju Cho
    Journal of Diabetes.2024;[Epub]     CrossRef
  • Efficacy and Safety of Pioglitazone Add-on in Patients with Type 2 Diabetes Mellitus Inadequately Controlled with Metformin and Dapagliflozin: A Multicenter, Randomized, Double-blind, and Placebo-controlled Study
    Yun Kyung Cho, Kyung-Soo Kim, Byung-Wan Lee, Jun Hwa Hong, Jae Myung Yu, Soo Lim, Ye An Kim, Chang Beom Lee, Sang Soo Kim, Soo Heon Kwak, Woo Je Lee
    Clinical Therapeutics.2024; 46(9): 662.     CrossRef
  • Toward reliable diabetes prediction: Innovations in data engineering and machine learning applications
    Md. Alamin Talukder, Md. Manowarul Islam, Md Ashraf Uddin, Mohsin Kazi, Majdi Khalid, Arnisha Akhter, Mohammad Ali Moni
    DIGITAL HEALTH.2024;[Epub]     CrossRef
  • Prognostic value of resting heart rate in predicting undiagnosed diabetes in adults: Korean National Health and Nutrition Examination Survey 2008–2018
    Dong-Hyuk Park, Seon Young Goo, Sung Hyun Hong, Ji-hee Min, Ji Yong Byeon, Mi-Kyung Lee, Hae Dong Lee, Byoung Wook Ahn, Heejin Kimm, Sun Ha Jee, Dong Hoon Lee, Yong-ho Lee, Eun Seok Kang, Justin Y. Jeon
    Nutrition, Metabolism and Cardiovascular Diseases.2023; 33(1): 141.     CrossRef
  • Levels and correlates of risk factor control in diabetes mellitus –ELSA-Brasil
    Bruna Cristine Chwal, Rodrigo Citton Padilha dos Reis, Maria Inês Schmidt, Bruce B. Duncan, Sandhi Maria Barreto, Rosane Harter Griep
    Diabetology & Metabolic Syndrome.2023;[Epub]     CrossRef
  • Changes in total cholesterol level and cardiovascular disease risk among type 2 diabetes patients
    Jaewon Khil, Sung Min Kim, Jooyoung Chang, Seulggie Choi, Gyeongsil Lee, Joung Sik Son, Sang Min Park, NaNa Keum
    Scientific Reports.2023;[Epub]     CrossRef
  • Effects of dapagliflozin compared with glimepiride on body composition in Asian patients with type 2 diabetes inadequately controlled with metformin: The BEYOND study
    Hyeong Kyu Park, Kyoung‐Ah Kim, Kyung‐Wan Min, Tae‐Seo Sohn, In Kyung Jeong, Chul Woo Ahn, Nan‐Hee Kim, Ie Byung Park, Ho Chan Cho, Choon Hee Chung, Sung Hee Choi, Kang Seo Park, Seoung‐Oh Yang, Kwan Woo Lee
    Diabetes, Obesity and Metabolism.2023; 25(9): 2743.     CrossRef
  • Comparison of SGLT2 inhibitors with DPP-4 inhibitors combined with metformin in patients with acute myocardial infarction and diabetes mellitus
    Young Sang Lyu, Seok Oh, Jin Hwa Kim, Sang Yong Kim, Myung Ho Jeong
    Cardiovascular Diabetology.2023;[Epub]     CrossRef
  • Association between Smoking Cessation and the Risk of Cholangiocarcinoma and Ampulla of Vater Cancer: A Nationwide Cohort Study
    Joo-Hyun Park, Jung Yong Hong, Kyungdo Han
    Liver Cancer.2023; 12(5): 457.     CrossRef
  • Social Support, eHealth Literacy, and mHealth Use in Older Adults With Diabetes
    Minjin Kim, Beomsoo Kim, Sunhee Park
    CIN: Computers, Informatics, Nursing.2023;[Epub]     CrossRef
  • Achievement of Treatment Goals and Mortality in Individuals with Diabetes: The ELSA-Brasil Study
    Bruna Cristine Chwal, Rodrigo Citton P. dos Reis, Maria Inês Schmidt, Sandhi Maria Barreto, Rosane Harter Griep, Bruce B. Duncan
    Journal of Clinical Medicine.2023; 12(24): 7663.     CrossRef
  • Cigarette Smoking and Risk of Infection-Related Mortality: A Cohort Study
    Hae Suk Cheong, Yoosoo Chang, Eun-Jeong Joo, Seungho Ryu
    Nicotine & Tobacco Research.2022; 24(2): 204.     CrossRef
  • Angiotensin‐converting enzyme inhibitors versus angiotensin receptor blockers: New‐onset diabetes mellitus stratified by statin use
    Juyoung Shin, Hyunah Kim, Hyeon Woo Yim, Ju Han Kim, Suehyun Lee, Hun‐Sung Kim
    Journal of Clinical Pharmacy and Therapeutics.2022; 47(1): 97.     CrossRef
  • Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds is associated with a risk of obesity and diabetes mellitus among Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015–2017
    Inae Lee, Hyunwoong Park, Min Joo Kim, Sunmi Kim, Sohyeon Choi, Jeongim Park, Yoon Hee Cho, Sooyeon Hong, Jiyoung Yoo, Gi Jeong Cheon, Kyungho Choi, Young Joo Park, Min Kyong Moon
    International Journal of Hygiene and Environmental Health.2022; 240: 113886.     CrossRef
  • Factors Associated with Chronic Disease and Health Care Utilization Among Young Adults in South Korea
    Jongho Park, Yeaeun Kim
    Population Health Management.2022; 25(3): 407.     CrossRef
  • Sleep duration and mortality in patients with diabetes: Results from the 2007–2015 Korea national health and nutrition examination survey
    Kang-Mo Gu, Se Hee Min, Jaeyoung Cho
    Diabetes & Metabolism.2022; 48(3): 101312.     CrossRef
  • Retinal Vascular Caliber Changes in Early Type 2 Diabetic Patients without Retinopathy
    Jeong Woo Park, Jeong Hun Bae, Su Jeong Song, Joon Mo Kim
    Journal of the Korean Ophthalmological Society.2022; 63(1): 20.     CrossRef
  • Association Between Long Working Hours and Chronic Kidney Disease According to Diabetic Status
    Ki Duk Kim, Suk-Yong Jang
    Journal of Occupational & Environmental Medicine.2022; 64(3): 190.     CrossRef
  • Sodium–glucose cotransporter 2 inhibitors do not increase the risk of fractures in real‐world clinical practice in Korea: A national observational cohort study
    Kyoung Hwa Ha, Dae Jung Kim, Yong Jun Choi
    Journal of Diabetes Investigation.2022; 13(6): 986.     CrossRef
  • Improvement of Lipotoxicity-Induced Islet β Cellular Insulin Secretion Disorder by Osteocalcin
    Yafang Zhang, Ling Li, Yongze Zhang, Sunjie Yan, Lingning Huang, Riccardo Calafiore
    Journal of Diabetes Research.2022; 2022: 1.     CrossRef
  • Association between gastric cancer and the risk of depression among South Korean adults
    Sinyoung Kwon, Jinyeong Kim, Taeyeon Kim, Wonjeong Jeong, Eun-Cheol Park
    BMC Psychiatry.2022;[Epub]     CrossRef
  • Performance of Diabetes and Kidney Disease Screening Scores in Contemporary United States and Korean Populations
    Liela Meng, Keun-Sang Kwon, Dae Jung Kim, Yong-ho Lee, Jeehyoung Kim, Abhijit V. Kshirsagar, Heejung Bang
    Diabetes & Metabolism Journal.2022; 46(2): 273.     CrossRef
  • Current Status of Low-Density Lipoprotein Cholesterol Target Achievement in Patients with Type 2 Diabetes Mellitus in Korea Compared with Recent Guidelines
    Soo Jin Yun, In-Kyung Jeong, Jin-Hye Cha, Juneyoung Lee, Ho Chan Cho, Sung Hee Choi, SungWan Chun, Hyun Jeong Jeon, Ho-Cheol Kang, Sang Soo Kim, Seung-Hyun Ko, Gwanpyo Koh, Su Kyoung Kwon, Jae Hyuk Lee, Min Kyong Moon, Junghyun Noh, Cheol-Young Park, Sung
    Diabetes & Metabolism Journal.2022; 46(3): 464.     CrossRef
  • Normalized Creatinine-to-Cystatin C Ratio and Risk of Diabetes in Middle-Aged and Older Adults: The China Health and Retirement Longitudinal Study
    Shanhu Qiu, Xue Cai, Bo Xie, Yang Yuan, Zilin Sun, Tongzhi Wu
    Diabetes & Metabolism Journal.2022; 46(3): 476.     CrossRef
  • A double‐blind, Randomized controlled trial on glucose‐lowering EFfects and safety of adding 0.25 or 0.5 mg lobeglitazone in type 2 diabetes patients with INadequate control on metformin and dipeptidyl peptidase‐4 inhibitor therapy: REFIND study
    Soree Ryang, Sang Soo Kim, Ji Cheol Bae, Ji Min Han, Su Kyoung Kwon, Young Il Kim, Il Seong Nam‐Goong, Eun Sook Kim, Mi‐kyung Kim, Chang Won Lee, Soyeon Yoo, Gwanpyo Koh, Min Jeong Kwon, Jeong Hyun Park, In Joo Kim
    Diabetes, Obesity and Metabolism.2022; 24(9): 1800.     CrossRef
  • Long‐term clinical outcomes of oral antidiabetic drugs as fixed‐dose combinations: A nationwide retrospective cohort study
    Sang‐Jun Cho, In‐Sun Oh, Han Eol Jeong, Young Min Cho, Yul Hwangbo, Oriana Hoi Yun Yu, Ju‐Young Shin
    Diabetes, Obesity and Metabolism.2022; 24(10): 2051.     CrossRef
  • Improvement in Age at Mortality and Changes in Causes of Death in the Population with Diabetes: An Analysis of Data from the Korean National Health Insurance and Statistical Information Service, 2006 to 2018
    Eugene Han, Sun Ok Song, Hye Soon Kim, Kang Ju Son, Sun Ha Jee, Bong-Soo Cha, Byung-Wan Lee
    Endocrinology and Metabolism.2022; 37(3): 466.     CrossRef
  • Dietary antioxidant consumption and the risk of type 2 diabetes in South Korean adults: a prospective cohort study based on the Health Examinees study
    Li-Juan Tan, Su Bin Hwang, Shinyoung Jun, Hyojee Joung, Sangah Shin
    BMJ Open.2022; 12(7): e065073.     CrossRef
  • Visual Acuity Outcomes in Diseases Associated with Reduced Visual Acuity: An Analysis of the National Health Insurance Service Database in Korea
    Sang-Yeob Kim, Byeong-Yeon Moon, Hyun-Gug Cho, Dong-Sik Yu
    International Journal of Environmental Research and Public Health.2022; 19(14): 8689.     CrossRef
  • Development of Various Diabetes Prediction Models Using Machine Learning Techniques
    Juyoung Shin, Jaewon Kim, Chanjung Lee, Joon Young Yoon, Seyeon Kim, Seungjae Song, Hun-Sung Kim
    Diabetes & Metabolism Journal.2022; 46(4): 650.     CrossRef
  • Real-World Prescription Patterns and Barriers Related to the Use of Sodium-Glucose Cotransporter 2 Inhibitors among Korean Patients with Type 2 Diabetes Mellitus and Cardiovascular Disease
    Jong Ha Baek, Ye Seul Yang, Seung-Hyun Ko, Kyung Do Han, Jae Hyeon Kim, Min Kyong Moon, Jong Suk Park, Byung-Wan Lee, Tae Jung Oh, Suk Chon, Jong Han Choi, Kyu Yeon Hur
    Diabetes & Metabolism Journal.2022; 46(5): 701.     CrossRef
  • Remnant cholesterol and the risk of cardiovascular disease in type 2 diabetes: a nationwide longitudinal cohort study
    Ji Hye Huh, Kyung-do Han, Yun Kyung Cho, Eun Roh, Jun Goo Kang, Seong Jin Lee, Sung-Hee Ihm
    Cardiovascular Diabetology.2022;[Epub]     CrossRef
  • Differences in health behavior and nutrient intake status between diabetes-aware and unaware Korean adults based on the Korea national health and nutrition examination survey 2016–18 data: A cross-sectional study
    Anshul Sharma, Chen Lulu, Kee-Ho Song, Hae-Jeung Lee
    Frontiers in Public Health.2022;[Epub]     CrossRef
  • Effective coverage of diabetes and hypertension: an analysis of Thailand’s national insurance database 2016–2019
    Nattadhanai Rajatanavin, Woranan Witthayapipopsakul, Vuthiphan Vongmongkol, Nithiwat Saengruang, Yaowaluk Wanwong, Aniqa Islam Marshall, Walaiporn Patcharanarumol, Viroj Tangcharoensathien
    BMJ Open.2022; 12(12): e066289.     CrossRef
  • Efficacy and Safety of Treatment with Quadruple Oral Hypoglycemic Agents in Uncontrolled Type 2 Diabetes Mellitus: A Multi-Center, Retrospective, Observational Study
    Jun Sung Moon, Sunghwan Suh, Sang Soo Kim, Heung Yong Jin, Jeong Mi Kim, Min Hee Jang, Kyung Ae Lee, Ju Hyung Lee, Seung Min Chung, Young Sang Lyu, Jin Hwa Kim, Sang Yong Kim, Jung Eun Jang, Tae Nyun Kim, Sung Woo Kim, Eonju Jeon, Nan Hee Cho, Mi-Kyung Ki
    Diabetes & Metabolism Journal.2021; 45(5): 675.     CrossRef
  • Association between secondhand smoke exposure and diabetes mellitus in 131 724 Korean never smokers using self‐reported questionnaires and cotinine levels: Gender differences
    Byung Jin Kim, Ji Hye Kim, Jeong Gyu Kang, Bum Soo Kim, Jin Ho Kang
    Journal of Diabetes.2021; 13(1): 43.     CrossRef
  • Importance of Awareness and Treatment for Diabetes in Influenza Vaccination Coverage of Diabetic Patients under 65 Years: A Population-Based Study
    Yu Mi Ko, Seung Hyun Ko, Kyoungdo Han, Yong-Moon Park, Joon Young Choi, Shin Young Kim, So Hyang Song, Chi Hong Kim, Sung Kyoung Kim
    Diabetes & Metabolism Journal.2021; 45(1): 55.     CrossRef
  • Associations of urinary concentrations of phthalate metabolites, bisphenol A, and parabens with obesity and diabetes mellitus in a Korean adult population: Korean National Environmental Health Survey (KoNEHS) 2015–2017
    Inae Lee, Young Joo Park, Min Joo Kim, Sunmi Kim, Sohyeon Choi, Jeongim Park, Yoon Hee Cho, Sooyeon Hong, Jiyoung Yoo, Hyunwoong Park, Gi Jeong Cheon, Kyungho Choi, Min Kyong Moon
    Environment International.2021; 146: 106227.     CrossRef
  • Early combination versus initial metformin monotherapy in the management of newly diagnosed type 2 diabetes: AnEast Asianperspective
    Linong Ji, Juliana C. N. Chan, Miao Yu, Kun Ho Yoon, Sin Gon Kim, Sung Hee Choi, Chien‐Ning Huang, Shih Te Tu, Chih‐Yuan Wang, Päivi Maria Paldánius, Wayne H. H. Sheu
    Diabetes, Obesity and Metabolism.2021; 23(1): 3.     CrossRef
  • Hypertension and stroke in Asia: A comprehensive review from HOPE Asia
    Yuda Turana, Jeslyn Tengkawan, Yook Chin Chia, Michael Nathaniel, Ji‐Guang Wang, Apichard Sukonthasarn, Chen‐Huan Chen, Huynh Van Minh, Peera Buranakitjaroen, Jinho Shin, Saulat Siddique, Jennifer M. Nailes, Sungha Park, Boon Wee Teo, Jorge Sison, Arieska
    The Journal of Clinical Hypertension.2021; 23(3): 513.     CrossRef
  • Glycaemic control with add‐on thiazolidinedione or a sodium‐glucose co‐transporter‐2 inhibitor in patients with type 2 diabetes after the failure of an oral triple antidiabetic regimen: A 24‐week, randomized controlled trial
    Jaehyun Bae, Ji Hye Huh, Minyoung Lee, Yong‐Ho Lee, Byung‐Wan Lee
    Diabetes, Obesity and Metabolism.2021; 23(2): 609.     CrossRef
  • Triglyceride and glucose index and the risk of gestational diabetes mellitus: A nationwide population-based cohort study
    Jung A Kim, Jinsil Kim, Eun Roh, So-hyeon Hong, You-Bin Lee, Sei Hyun Baik, Kyung Mook Choi, Eunjin Noh, Soon Young Hwang, Geum Joon Cho, Hye Jin Yoo
    Diabetes Research and Clinical Practice.2021; 171: 108533.     CrossRef
  • Effectiveness and safety of sodium‐glucose co‐transporter‐2 inhibitors compared with dipeptidyl peptidase‐4 inhibitors in older adults with type 2 diabetes: A nationwide population‐based study
    Seung Jin Han, Kyoung Hwa Ha, Nami Lee, Dae Jung Kim
    Diabetes, Obesity and Metabolism.2021; 23(3): 682.     CrossRef
  • Diabetes Fact Sheets in Korea, 2020: An Appraisal of Current Status
    Chan-Hee Jung, Jang Won Son, Shinae Kang, Won Jun Kim, Hun-Sung Kim, Hae Soon Kim, Mihae Seo, Hye-Jung Shin, Seong-Su Lee, Su Jin Jeong, Yongin Cho, Seung Jin Han, Hyang Mi Jang, Mira Rho, Shinbi Lee, Mihyun Koo, Been Yoo, Jung-Wha Moon, Hye Young Lee, Ja
    Diabetes & Metabolism Journal.2021; 45(1): 1.     CrossRef
  • Prevalence and diagnosis experience of osteoporosis in postmenopausal women over 50: Focusing on socioeconomic factors
    Min Hyeok Choi, Ji Hee Yang, Jae Seung Seo, Yoon-ji Kim, Suk-Woong Kang, Jose M. Moran
    PLOS ONE.2021; 16(3): e0248020.     CrossRef
  • Metformin use in cancer survivors with diabetes reduces all-cause mortality, based on the Korean National Health Insurance Service between 2002 and 2015
    Joungyoun Kim, Yoon-Jong Bae, Jae-woo Lee, Ye-seul Kim, Yonghwan Kim, Hyo-Sun You, Hyeong-Seop Kim, Eun-A Choi, Ye-Eun Han, Hee-Taik Kang
    Medicine.2021; 100(11): e25045.     CrossRef
  • Role of obesity-induced inflammation in the development of insulin resistance and type 2 diabetes: history of the research and remaining questions
    Jieun Kim, Jongsoon Lee
    Annals of Pediatric Endocrinology & Metabolism.2021; 26(1): 1.     CrossRef
  • White Blood Cell Count as a Predictor of Incident Type 2 Diabetes Mellitus Among Non-Obese Adults: A Longitudinal 10-Year Analysis of the Korean Genome and Epidemiology Study
    Jae-Min Park, Hye Sun Lee, Ju-Young Park, Dong-Hyuk Jung, Ji-Won Lee
    Journal of Inflammation Research.2021; Volume 14: 1235.     CrossRef
  • The Association of Hemoglobin A1c and Fasting Glucose Levels with hs-CRP in Adults Not Diagnosed with Diabetes from the KNHANES, 2017
    Jeong Woo Seo, Sat Byul Park, Ulrike Rothe
    Journal of Diabetes Research.2021; 2021: 1.     CrossRef
  • Effects of Jerusalem Artichoke Extract and Inulin on Blood Glucose Levels and Insulin Secretion in Streptozotocin Induced Diabetic Mice
    Seung Hee Kim, Byung Ki Kim, Boo Yeun Park, Jung Min Kim, Young Jik Lee, Mi Kyung Lee, Sung-Tae Yee, Mi Yeon Kang
    The Journal of Korean Diabetes.2021; 22(1): 60.     CrossRef
  • Health State Utility Values for Type 2 Diabetes and Related Complications in East and Southeast Asia: A Systematic Review and Meta-Analysis
    Chiu Hang Mok, Harley H.Y. Kwok, Carmen S. Ng, Gabriel M. Leung, Jianchao Quan
    Value in Health.2021; 24(7): 1059.     CrossRef
  • Association between alcohol consumption status and obesity-related comorbidities in men: data from the 2016 Korean community health survey
    Bo-Yeon Kim, Hyewon Nam, Jeong-Ju Yoo, Yoon-Young Cho, Dug-Hyun Choi, Chan-Hee Jung, Ji-Oh Mok, Chul-Hee Kim
    BMC Public Health.2021;[Epub]     CrossRef
  • Epidemiology of cardiovascular disease and its risk factors in Korea
    Hyeon Chang Kim
    Global Health & Medicine.2021; 3(3): 134.     CrossRef
  • Korea Heart Disease Fact Sheet 2020: Analysis of Nationwide Data
    Hyeok-Hee Lee, So Mi Jemma Cho, Hokyou Lee, Jongmin Baek, Jang-Ho Bae, Wook-Jin Chung, Hyeon Chang Kim
    Korean Circulation Journal.2021; 51(6): 495.     CrossRef
  • Personalized Type 2 Diabetes Management Using a Mobile Application Integrated with Electronic Medical Records: An Ongoing Randomized Controlled Trial
    Eun-Young Lee, Jae-Seung Yun, Seon-Ah Cha, Sun-Young Lim, Jin-Hee Lee, Yu-Bae Ahn, Kun-Ho Yoon, Seung-Hyun Ko
    International Journal of Environmental Research and Public Health.2021; 18(10): 5300.     CrossRef
  • Association between toothbrushing and non-alcoholic fatty liver disease
    Ji-Youn Kim, Yong-Moon Park, Gyu-Na Lee, Hyun Chul Song, Yu-Bae Ahn, Kyungdo Han, Seung-Hyun Ko, Houkai Li
    PLOS ONE.2021; 16(5): e0243686.     CrossRef
  • Control of Glucose, Blood Pressure, and Cholesterol among Adults with Diabetes: The Brazilian National Health Survey
    Rodrigo Citton P. dos Reis, Bruce B. Duncan, Célia Landmann Szwarcwald, Deborah Carvalho Malta, Maria Inês Schmidt
    Journal of Clinical Medicine.2021; 10(15): 3428.     CrossRef
  • Comparison of fracture risk between type 1 and type 2 diabetes: a comprehensive real-world data
    J. Ha, C. Jeong, K.-D. Han, Y. Lim, M.K. Kim, H.-S. Kwon, K.-H. Song, M.I. Kang, K.-H. Baek
    Osteoporosis International.2021; 32(12): 2543.     CrossRef
  • Treatment Patterns of Type 2 Diabetes Assessed Using a Common Data Model Based on Electronic Health Records of 2000–2019
    Kyung Ae Lee, Heung Yong Jin, Yu Ji Kim, Yong-Jin Im, Eun-Young Kim, Tae Sun Park
    Journal of Korean Medical Science.2021;[Epub]     CrossRef
  • Etiology, diagnosis, complications, and treatments of diabetic foot
    Dong-Kyo Seo
    Journal of the Korean Medical Association.2021; 64(8): 523.     CrossRef
  • Occupational Noise Exposure and Incidence of High Fasting Blood Glucose: A 3-Year, Multicenter, Retrospective Study
    Seunghan Kim, Byungyoon Yun, Seunghyun Lee, Changyoung Kim, Juho Sim, Ara Cho, Yeonsuh Oh, Jiho Lee, Jinha Yoon
    International Journal of Environmental Research and Public Health.2021; 18(17): 9388.     CrossRef
  • Positive association between the ratio of triglycerides to high-density lipoprotein cholesterol and diabetes incidence in Korean adults
    Joungyoun Kim, Sang-Jun Shin, Ye-Seul Kim, Hee-Taik Kang
    Cardiovascular Diabetology.2021;[Epub]     CrossRef
  • Comparative Evaluation of Standard E TB-Feron ELISA and QuantiFERON-TB Gold Plus Assays in Patients with Tuberculosis and Healthcare Workers
    In Young Yoo, Jaewoong Lee, Ae Ran Choi, Yoon Hee Jun, Hwa Young Lee, Ji Young Kang, Yeon-Joon Park
    Diagnostics.2021; 11(9): 1659.     CrossRef
  • Associations between obesity, weight change and decreased renal function in Korean type 2 diabetic patients: a longitudinal follow-up study
    Bo-Yeon Kim, Dug-Hyun Choi, Chan-Hee Jung, Ji-Oh Mok, Chul-Hee Kim
    BMC Endocrine Disorders.2021;[Epub]     CrossRef
  • Real-World Efficacy and Safety of Dulaglutide in Korean Patients with Type 2 Diabetes Mellitus: A Retrospective Study in a Tertiary Referral Center
    Jee Hee Yoon, A Ram Hong, Wonsuk Choi, Ji Yong Park, Hee Kyung Kim, Ho-Cheol Kang
    Chonnam Medical Journal.2021; 57(3): 211.     CrossRef
  • The History of Insulin Therapy in Korea
    Jun Sung Moon, Jong Chul Won, Young Min Cho
    Diabetes & Metabolism Journal.2021; 45(5): 623.     CrossRef
  • How Can We Adopt the Glucose Tolerance Test to Facilitate Predicting Pregnancy Outcome in Gestational Diabetes Mellitus?
    Kyeong Jin Kim, Nam Hoon Kim, Jimi Choi, Sin Gon Kim, Kyung Ju Lee
    Endocrinology and Metabolism.2021; 36(5): 988.     CrossRef
  • Blood Pressure and Cardiovascular Disease in Older Patients With Diabetes: Retrospective Cohort Study
    Sangmo Hong, Jung Hwan Park, Kyungdo Han, Chang Beom Lee, Dong Sun Kim, Sung Hoon Yu
    Journal of the American Heart Association.2021;[Epub]     CrossRef
  • Long-Term Glycaemic Durability of Early Combination Therapy Strategy versus Metformin Monotherapy in Korean Patients with Newly Diagnosed Type 2 Diabetes Mellitus
    Soon-Jib Yoo, Sang-Ah Chang, Tae Seo Sohn, Hyuk-Sang Kwon, Jong Min Lee, Sungdae Moon, Pieter Proot, Päivi M Paldánius, Kun Ho Yoon
    Diabetes & Metabolism Journal.2021; 45(6): 954.     CrossRef
  • Short-Term Effects of the Internet-Based Korea Diabetes Prevention Study: 6-Month Results of a Community-Based Randomized Controlled Trial
    Jin-Hee Lee, Sun-Young Lim, Seon-Ah Cha, Chan-Jung Han, Ah Reum Jung, Kook-Rye Kim, Kun-Ho Yoon, Seung-Hyun Ko
    Diabetes & Metabolism Journal.2021; 45(6): 960.     CrossRef
  • Anti-diabetic effects of aqueous extract of Dendropanax morbifera Lev. leaves in streptozotocin-induced diabetic Sprague-Dawley rats
    Min-Jae Kim, Ye-Jin Kang, Dong-Eon Lee, Suk Kim, Se-Hun Lim, Hu-Jang Lee
    Korean Journal of Veterinary Research.2021; 61(4): e38.     CrossRef
  • The Potential Role of MicroRNA in Diabetic Cardiomyopathy
    Jin Hwa Kim
    Diabetes & Metabolism Journal.2020; 44(1): 54.     CrossRef
  • Diabetes and Metabolism Journal in 2020: Good to Great
    In-Kyung Jeong
    Diabetes & Metabolism Journal.2020; 44(1): 1.     CrossRef
  • Use of SGLT-2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Abdominal Obesity: An Asian Perspective and Expert Recommendations
    Wayne Huey-Herng Sheu, Siew Pheng Chan, Bien J. Matawaran, Chaicharn Deerochanawong, Ambrish Mithal, Juliana Chan, Ketut Suastika, Chin Meng Khoo, Huu Man Nguyen, Ji Linong, Andrea Luk, Kun-Ho Yoon
    Diabetes & Metabolism Journal.2020; 44(1): 11.     CrossRef
  • Underweight Increases the Risk of End-Stage Renal Diseases for Type 2 Diabetes in Korean Population: Data From the National Health Insurance Service Health Checkups 2009–2017
    Yang-Hyun Kim, Jun Goo Kang, Seong Jin Lee, Kyung-do Han, Sung-Hee Ihm, Kyung-Hwan Cho, Yong-Gyu Park
    Diabetes Care.2020; 43(5): 1118.     CrossRef
  • The Role of CD36 in Type 2 Diabetes Mellitus: β-Cell Dysfunction and Beyond
    Jun Sung Moon, Udayakumar Karunakaran, Elumalai Suma, Seung Min Chung, Kyu Chang Won
    Diabetes & Metabolism Journal.2020; 44(2): 222.     CrossRef
  • Metformin treatment for patients with diabetes and chronic kidney disease: A Korean Diabetes Association and Korean Society of Nephrology consensus statement
    Kyu Yeon Hur, Mee Kyoung Kim, Seung Hyun Ko, Miyeun Han, Dong Won Lee, Hyuk-Sang Kwon
    Kidney Research and Clinical Practice.2020; 39(1): 32.     CrossRef
  • Effect of Smartphone-Based Lifestyle Coaching App on Community-Dwelling Population With Moderate Metabolic Abnormalities: Randomized Controlled Trial
    So Mi Jemma Cho, Jung Hyun Lee, Jee-Seon Shim, Hyungseon Yeom, Su Jin Lee, Yong Woo Jeon, Hyeon Chang Kim
    Journal of Medical Internet Research.2020; 22(10): e17435.     CrossRef
  • Fasting plasma glucose level and the risk of open angle glaucoma: Nationwide population-based cohort study in Korea
    Jin A. Choi, Yong-Moon Park, Kyungdo Han, Jiyoung Lee, Jae-Seung Yun, Seung-Hyun Ko, Bang V Bui
    PLOS ONE.2020; 15(9): e0239529.     CrossRef
  • Smoking as a Target for Prevention of Diabetes
    Ye Seul Yang, Tae Seo Sohn
    Diabetes & Metabolism Journal.2020; 44(3): 402.     CrossRef
  • Association of Snoring with Prediabetes and Type 2 Diabetes Mellitus: The Cardiovascular and Metabolic Diseases Etiology Research Center Cohort
    So Mi Jemma Cho, Hokyou Lee, Jee-Seon Shim, Hyeon Chang Kim
    Diabetes & Metabolism Journal.2020; 44(5): 687.     CrossRef
  • Increased Mortality Burden in Young Asian Subjects with Dysglycemia and Comorbidities
    Eun-Jung Rhee, Inha Jung, Hyemi Kwon, Se Eun Park, Yang-Hyun Kim, Kyung-Do Han, Yong-Gyu Park, Won-Young Lee
    Journal of Clinical Medicine.2020; 9(4): 1042.     CrossRef
  • Metformin Treatment for Patients with Diabetes and Chronic Kidney Disease: A Korean Diabetes Association and Korean Society of Nephrology Consensus Statement
    Kyu Yeon Hur, Mee Kyoung Kim, Seung Hyun Ko, Miyeun Han, Dong Won Lee, Hyuk-Sang Kwon
    Diabetes & Metabolism Journal.2020; 44(1): 3.     CrossRef
  • Study of hospitalization and mortality in Korean diabetic patients using the diabetes complications severity index
    Hyunju Yoo, Eunjung Choo, Sukhyang Lee
    BMC Endocrine Disorders.2020;[Epub]     CrossRef
  • Comprehensive Trends and Patterns of Antihypertensive Prescriptions Using a Nationwide Claims Database in Korea


    Minji Jung, Eunjung Choo, Sukhyang Lee
    Clinical Epidemiology.2020; Volume 12: 963.     CrossRef
  • The effects of climate on the incidence of benign paroxysmal positional vertigo
    Seung Ri Oh, Sung Jin Min, Chang Eurn Kim, Munyoung Chang, Seog-Kyun Mun
    International Journal of Biometeorology.2020; 64(12): 2119.     CrossRef
  • Prevalence and Current Management of Cardiovascular Risk Factors in Korean Adults Based on Fact Sheets
    Eun-Jung Rhee
    Endocrinology and Metabolism.2020; 35(1): 85.     CrossRef
  • Diabetic Retinopathy and Related Clinical Practice for People with Diabetes in Korea: A 10-Year Trend Analysis
    Yoo-Ri Chung, Kyoung Hwa Ha, Kihwang Lee, Dae Jung Kim
    Diabetes & Metabolism Journal.2020; 44(6): 928.     CrossRef
  • Association between sleep duration and impaired fasting glucose according to work type in non-regular workers: data from the first and second year (2016, 2017) of the 7th Korean National Health and Nutrition Examination (KNHANE) (a cross-sectional study)
    JaeHan Joo, Jae-Gwang Lee, SangWoo Kim, JaeHan Lee, June-Hee Lee, Kyung-Jae Lee
    Annals of Occupational and Environmental Medicine.2020;[Epub]     CrossRef
  • Hepatocellular Carcinoma in Korea between 2012 and 2014: an Analysis of Data from the Korean Nationwide Cancer Registry
    Young Eun Chon, Han Ah Lee, Jun Sik Yoon, Jun Yong Park, Bo Hyun Kim, In Joon Lee, Suk Kyun Hong, Dong Hyeon Lee, Hyun-Joo Kong, Eunyang Kim, Young-Joo Won, Jeong-Hoon Lee
    Journal of Liver Cancer.2020; 20(2): 135.     CrossRef
  • Effect of Switching from Linagliptin to Teneligliptin Dipeptidyl Peptidase-4 Inhibitors in Older Patients with Type 2 Diabetes Mellitus


    Eugene Han, Minyoung Lee, Yong-ho Lee, Hye Soon Kim, Byung-wan Lee, Bong-Soo Cha, Eun Seok Kang
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2020; Volume 13: 4113.     CrossRef
  • Temperature Correction to Enhance Blood Glucose Monitoring Accuracy Using Electrical Impedance Spectroscopy
    Ye Sung Lee, Minkook Son, Alexander Zhbanov, Yugyung Jung, Myoung Hoon Jung, Kunsun Eom, Sung Hyun Nam, Jongae Park, Sung Yang
    Sensors.2020; 20(21): 6231.     CrossRef
  • Predictors of Health-Related Quality of Life in Korean Adults with Diabetes Mellitus
    Mihyun Jeong
    International Journal of Environmental Research and Public Health.2020; 17(23): 9058.     CrossRef
  • The triglyceride-glucose index predicts ischemic heart disease risk in Koreans: a prospective study using National Health Insurance Service data
    Byoungjin Park, Yong-Jae Lee, Hye Sun Lee, Dong-Hyuk Jung
    Cardiovascular Diabetology.2020;[Epub]     CrossRef
  • Independent Impact of Diabetes on the Severity of Coronavirus Disease 2019 in 5,307 Patients in South Korea: A Nationwide Cohort Study (Diabetes Metab J 2020;44:737-46)
    Sun Joon Moon, Eun-Jung Rhee, Won-Young Lee, Kun-Ho Yoon
    Diabetes & Metabolism Journal.2020; 44(6): 942.     CrossRef
  • Does Diabetes Increase the Risk of Contracting COVID-19? A Population-Based Study in Korea
    Sung-Youn Chun, Dong Wook Kim, Sang Ah Lee, Su Jung Lee, Jung Hyun Chang, Yoon Jung Choi, Seong Woo Kim, Sun Ok Song
    Diabetes & Metabolism Journal.2020; 44(6): 897.     CrossRef
  • Independent Impact of Diabetes on the Severity of Coronavirus Disease 2019 in 5,307 Patients in South Korea: A Nationwide-Cohort Study (Diabetes Metab J 2020;44:737-46)
    Kyuho Kim, Tae Jung Oh
    Diabetes & Metabolism Journal.2020; 44(6): 938.     CrossRef
  • Clinical Outcomes of COVID-19 Patients with Type 2 Diabetes: A Population-Based Study in Korea
    Ji Hong You, Sang Ah Lee, Sung-Youn Chun, Sun Ok Song, Byung-Wan Lee, Dae Jung Kim, Edward J. Boyko
    Endocrinology and Metabolism.2020; 35(4): 901.     CrossRef
  • The Liability Threshold Model for Predicting the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes: A Multi-Cohort Study of Korean Adults
    Eun Pyo Hong, Seong Gu Heo, Ji Wan Park
    Metabolites.2020; 11(1): 6.     CrossRef
  • Increased Age of Death and Change in Causes of Death Among Persons With Diabetes Mellitus From the Korean National Health Insurance and Statistical Information Service, 2006 to 2018
    Eugene Han, Sun Ok Song, Hye Soon Kim, Kang Ju Son, Sun Ha Jee, Bong-Soo Cha, Byung-Wan Lee
    SSRN Electronic Journal .2020;[Epub]     CrossRef
  • Diabetes and Muscle Dysfunction in Older Adults
    Hak Chul Jang
    Annals of Geriatric Medicine and Research.2019; 23(4): 160.     CrossRef
  • Letter: Comparison of the Efficacy of Rosuvastatin Monotherapy 20 mg with Rosuvastatin 5 mg and Ezetimibe 10 mg Combination Therapy on Lipid Parameters in Patients with Type 2 Diabetes Mellitus (Diabetes Metab J2019;43:582–9)
    Tae Seo Sohn
    Diabetes & Metabolism Journal.2019; 43(6): 909.     CrossRef
  • Comprehensive Efforts Are Needed to Improve the Quality of Primary Diabetes Care in Korea
    Chan-Hee Jung
    Endocrinology and Metabolism.2019; 34(3): 265.     CrossRef
Pathophysiology
Factors Related to Blood Intact Incretin Levels in Patients with Type 2 Diabetes Mellitus
Soyeon Yoo, Eun-Jin Yang, Gwanpyo Koh
Diabetes Metab J. 2019;43(4):495-503.   Published online February 20, 2019
DOI: https://doi.org/10.4093/dmj.2018.0105
  • 4,231 View
  • 37 Download
AbstractAbstract PDFPubReader   
Background

We performed this study to identify factors related to intact incretin levels in patients with type 2 diabetes mellitus (T2DM).

Methods

We cross-sectionally analyzed 336 patients with T2DM. Intact glucagon-like peptide 1 (iGLP-1) and intact glucose-dependent insulinotropic polypeptide (iGIP) levels were measured in a fasted state and 30 minutes after ingestion of a standard mixed meal. The differences between 30 and 0 minute iGLP-1 and iGIP levels were indicated as ΔiGLP-1 and ΔiGIP.

Results

In simple correlation analyses, fasting iGLP-1 was positively correlated with glucose, C-peptide, creatinine, and triglyceride levels, and negatively correlated with estimated glomerular filtration rate. ΔiGLP-1 was positively correlated only with ΔC-peptide levels. Fasting iGIP showed positive correlations with glycosylated hemoglobin (HbA1c) and fasting glucose levels, and negative correlations with ΔC-peptide levels. ΔiGIP was negatively correlated with diabetes duration and HbA1c levels, and positively correlated with Δglucose and ΔC-peptide levels. In multivariate analyses adjusting for age, sex, and covariates, fasting iGLP-1 levels were significantly related to fasting glucose levels, ΔiGLP-1 levels were positively related to ΔC-peptide levels, fasting iGIP levels were related to fasting C-peptide levels, and ΔiGIP levels were positively related to ΔC-peptide and Δglucose levels.

Conclusion

Taken together, intact incretin levels are primarily related to C-peptide and glucose levels. This result suggests that glycemia and insulin secretion are the main factors associated with intact incretin levels in T2DM patients.

Obesity and Metabolic Syndrome
The Protective Effects of Increasing Serum Uric Acid Level on Development of Metabolic Syndrome
Tae Yang Yu, Sang-Man Jin, Jae Hwan Jee, Ji Cheol Bae, Moon-Kyu Lee, Jae Hyeon Kim
Diabetes Metab J. 2019;43(4):504-520.   Published online February 21, 2019
DOI: https://doi.org/10.4093/dmj.2018.0079
  • 5,334 View
  • 55 Download
  • 14 Web of Science
  • 11 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   
Background

It has not been determined whether changes in serum uric acid (SUA) level are associated with incident metabolic syndrome (MetS). The aim of the current study was to investigate the relationship between changes in SUA level and development of MetS in a large number of subjects.

Methods

In total, 13,057 subjects participating in a medical health check-up program without a diagnosis of MetS at baseline were enrolled. Cox proportional hazards models were used to test the independent association of percent changes in SUA level with development of MetS.

Results

After adjustment for age, systolic blood pressure, body mass index, fat-free mass (%), estimated glomerular filtration rate, smoking status, fasting glucose, triglyceride, low density lipoprotein cholesterol, high density lipoprotein cholesterol, and baseline SUA levels, the hazard ratios (HRs) (95% confidence intervals [CIs]) for incident MetS in the second, third, and fourth quartiles compared to the first quartile of percent change in SUA level were 1.055 (0.936 to 1.190), 0.927 (0.818 to 1.050), and 0.807 (0.707 to 0.922) in male (P for trend <0.001) and 1.000 (0.843 to 1.186), 0.744 (0.615 to 0.900), and 0.684 (0.557 to 0.840) in female (P for trend <0.001), respectively. As a continuous variable in the fully-adjusted model, each one-standard deviation increase in percent change in SUA level was associated with an HR (95% CI) for incident MetS of 0.944 (0.906 to 0.982) in male (P=0.005) and 0.851 (0.801 to 0.905) in female (P<0.001).

Conclusion

The current study demonstrated that increasing SUA level independently protected against the development of MetS, suggesting a possible role of SUA as an antioxidant in the pathogenesis of incident MetS.

Citations

Citations to this article as recorded by  
  • High prevalence of hyperuricemia and the association with metabolic syndrome in the rural areas of Southwestern China: A structural equation modeling based on the Zhuang minority cohort
    Xiaofen Tang, Shun Liu, Xiaoqiang Qiu, Li Su, Dongping Huang, Jun Liang, Yu Yang, Jennifer Hui Juan Tan, Xiaoyun Zeng, Yihong Xie
    Nutrition, Metabolism and Cardiovascular Diseases.2024; 34(2): 497.     CrossRef
  • Predictive Value of Collagen Biomarkers in Advanced Chronic Kidney Disease Patients
    Carina Ureche, Gianina Dodi, Adela Mihaela Șerban, Andreea Simona Covic, Luminița Voroneanu, Simona Hogaș, Radu Andy Sascău, Cristian Stătescu, Adrian Covic
    Biomolecules.2023; 13(2): 389.     CrossRef
  • The bidirectional relationship between metabolic syndrome and hyperuricemia in China: A longitudinal study from CHARLS
    Wen-Yu Chen, Yan-Peng Fu, Min Zhou
    Endocrine.2022; 76(1): 62.     CrossRef
  • Correlation between Serum Oxidative Stress Level and Serum Uric Acid and Prognosis in Patients with Hepatitis B-Related Liver Cancer before Operation
    Maowen Yu, Chaozhu Zhang, Hongbo Tang, Chaohui Xiao, Hangjun Che
    Journal of Healthcare Engineering.2022; 2022: 1.     CrossRef
  • Association between metabolic syndrome and uric acid: a systematic review and meta-analysis
    Elena Raya-Cano, Manuel Vaquero-Abellán, Rafael Molina-Luque, Domingo De Pedro-Jiménez, Guillermo Molina-Recio, Manuel Romero-Saldaña
    Scientific Reports.2022;[Epub]     CrossRef
  • Acute moderate‐intensity aerobic exercise promotes purinergic and inflammatory responses in sedentary, overweight and physically active subjects
    Cesar Eduardo Jacintho Moritz, Franccesco Pinto Boeno, Alexandra Ferreira Vieira, Samuel Vargas Munhoz, Juliete Nathali Scholl, Amanda de Fraga Dias, Pauline Rafaela Pizzato, Fabrício Figueiró, Ana Maria Oliveira Battastini, Alvaro Reischak‐Oliveira
    Experimental Physiology.2021; 106(4): 1024.     CrossRef
  • Association between baseline and changes in serum uric acid and incident metabolic syndrome: a nation-wide cohort study and updated meta-analysis
    Sen Chen, Nianwei Wu, Chuan Yu, Ying Xu, Chengfu Xu, Yuli Huang, Jian Zhao, Ningxiu Li, Xiong-Fei Pan
    Nutrition & Metabolism.2021;[Epub]     CrossRef
  • Can biomarkers be used to improve diagnosis and prediction of metabolic syndrome in childhood cancer survivors? A systematic review
    Vincent G. Pluimakers, Selveta S. van Santen, Marta Fiocco, Marie‐Christine E. Bakker, Aart J. van der Lelij, Marry M. van den Heuvel‐Eibrink, Sebastian J. C. M. M. Neggers
    Obesity Reviews.2021;[Epub]     CrossRef
  • Inverse associations between serum urate and glycemic status in a general population and in persons with diabetes mellitus
    Ichiro Wakabayashi
    Diabetology & Metabolic Syndrome.2020;[Epub]     CrossRef
  • Association of Serum Uric Acid with Metabolic Syndrome and Its Components: A Mendelian Randomization Analysis
    Lu Wang, Tao Zhang, Yafei Liu, Fang Tang, Fuzhong Xue
    BioMed Research International.2020; 2020: 1.     CrossRef
  • Association between Serum Uric Acid and Metabolic Syndrome in Koreans
    Jihyun Jeong, Young Ju Suh
    Journal of Korean Medical Science.2019;[Epub]     CrossRef
Obesity and Metabolic Syndrome
Increased Serum Angiopoietin-Like 6 Ahead of Metabolic Syndrome in a Prospective Cohort Study
Jun Namkung, Joon Hyung Sohn, Jae Seung Chang, Sang-Wook Park, Jang-Young Kim, Sang-Baek Koh, In Deok Kong, Kyu-Sang Park
Diabetes Metab J. 2019;43(4):521-529.   Published online March 29, 2019
DOI: https://doi.org/10.4093/dmj.2018.0080
  • 5,351 View
  • 53 Download
  • 15 Web of Science
  • 17 Crossref
AbstractAbstract PDFPubReader   
Background

Despite being an anti-obesity hepatokine, the levels of serum angiopoietin-like 6 (ANGPTL6) are elevated in various metabolic diseases. Thus, ANGPTL6 expression may reflect metabolic burden and may have compensatory roles. This study investigated the association between serum ANGPTL6 levels and new-onset metabolic syndrome.

Methods

In total, 221 participants without metabolic syndrome were randomly selected from a rural cohort in Korea. Baseline serum ANGPTL6 levels were measured using an enzyme-linked immunosorbent assay. Anthropometric and biochemical markers were analyzed before and after follow-up examinations.

Results

During an average follow-up period of 2.75 (interquartile range, 0.76) years, 82 participants (37.1%) presented new-onset metabolic syndrome and had higher ANGPTL6 levels before onset than those without metabolic syndrome (48.03±18.84 ng/mL vs. 64.75±43.35 ng/mL, P=0.001). In the multivariable adjusted models, the odds ratio for the development of metabolic syndrome in the highest quartile of ANGPTL6 levels was 3.61 (95% confidence interval, 1.27 to 10.26). The use of ANGPTL6 levels in addition to the conventional components improved the prediction of new-onset metabolic syndrome (area under the receiver operating characteristic curve: 0.775 vs. 0.807, P=0.036).

Conclusion

Increased serum ANGPTL6 levels precede the development of metabolic syndrome and its components, including low high density lipoprotein, high triglyceride, and high glucose levels, which have an independent predictive value for metabolic syndrome.

Citations

Citations to this article as recorded by  
  • Circulating Angiopoietin-like Protein 6 Levels and Clinical Features in Patients with Type 2 Diabetes
    Kohzo Takebayashi, Tatsuhiko Suzuki, Mototaka Yamauchi, Kenji Hara, Takafumi Tsuchiya, Toshihiko Inukai, Koshi Hashimoto
    Internal Medicine.2024;[Epub]     CrossRef
  • Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases
    Eric Thorin, Pauline Labbé, Mélanie Lambert, Pauline Mury, Olina Dagher, Géraldine Miquel, Nathalie Thorin-Trescases
    Canadian Journal of Cardiology.2023; 39(12): 1736.     CrossRef
  • Hyperlipidemia and hypothyroidism
    Xin Su, Hua Peng, Xiang Chen, Xijie Wu, Bin Wang
    Clinica Chimica Acta.2022; 527: 61.     CrossRef
  • Multidimensional Biomarker Analysis Including Mitochondrial Stress Indicators for Nonalcoholic Fatty Liver Disease
    Eunha Chang, Jae Seung Chang, In Deok Kong, Soon Koo Baik, Moon Young Kim, Kyu-Sang Park
    Gut and Liver.2022; 16(2): 171.     CrossRef
  • Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis
    Bai-Hui Zhang, Fan Yin, Ya-Nan Qiao, Shou-Dong Guo
    Frontiers in Molecular Biosciences.2022;[Epub]     CrossRef
  • Relationship of ANGPTL6 With Neonatal Glucose Homeostasis and Fat Mass Is Disrupted in Gestational Diabetic Pregnancies
    Abel Valencia-Martínez, Ute Schaefer-Graf, Encarnación Amusquivar, Emilio Herrera, Henar Ortega-Senovilla
    The Journal of Clinical Endocrinology & Metabolism.2022; 107(10): e4078.     CrossRef
  • Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism
    Huixing Liu, Daoquan Peng
    Endocrine Connections.2022;[Epub]     CrossRef
  • RETRACTED ARTICLE: Relationship between the development of hyperlipidemia in hypothyroidism patients
    Xin Su, Xiang Chen, Bin Wang
    Molecular Biology Reports.2022; 49(11): 11025.     CrossRef
  • Effects of Exercise Intervention on Mitochondrial Stress Biomarkers in Metabolic Syndrome Patients: A Randomized Controlled Trial
    Jae Seung Chang, Jun Namkung
    International Journal of Environmental Research and Public Health.2021; 18(5): 2242.     CrossRef
  • Angiopoietin-like proteins in atherosclerosis
    Yi-Zhang Liu, Chi Zhang, Jie-Feng Jiang, Zhe-Bin Cheng, Zheng-Yang Zhou, Mu-Yao Tang, Jia-Xiang Sun, Liang Huang
    Clinica Chimica Acta.2021; 521: 19.     CrossRef
  • Effects of Bariatric Surgeries on Fetuin-A, Selenoprotein P, Angiopoietin-Like Protein 6, and Fibroblast Growth Factor 21 Concentration
    Jakub Poloczek, Wojciech Kazura, Ewa Kwaśnicka, Janusz Gumprecht, Jerzy Jochem, Dominika Stygar, Munmun Chattopadhyay
    Journal of Diabetes Research.2021; 2021: 1.     CrossRef
  • Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism
    Tae Hyun Kim, Dong-Gyun Hong, Yoon Mee Yang
    Biomedicines.2021; 9(12): 1903.     CrossRef
  • Serum levels of angiopoietin-related growth factor in diabetes mellitus and chronic hemodialysis
    Semra ÖZKAN ÖZTÜRK, Hilmi ATASEVEN
    Cumhuriyet Medical Journal.2021;[Epub]     CrossRef
  • ANGPTL6 Level in Patient with Coronary Heart Disease and Its Relationship with the Severity of Coronary Artery Lesions
    蕾 任
    Advances in Clinical Medicine.2020; 10(05): 714.     CrossRef
  • Investigating the Role of Myeloperoxidase and Angiopoietin-like Protein 6 in Obesity and Diabetes
    Mohammad G. Qaddoumi, Muath Alanbaei, Maha M. Hammad, Irina Al Khairi, Preethi Cherian, Arshad Channanath, Thangavel Alphonse Thanaraj, Fahd Al-Mulla, Mohamed Abu-Farha, Jehad Abubaker
    Scientific Reports.2020;[Epub]     CrossRef
  • Letter: Increased Serum Angiopoietin-Like 6 Ahead of Metabolic Syndrome in a Prospective Cohort Study (Diabetes Metab J 2019;43:521-9)
    Jin Hwa Kim
    Diabetes & Metabolism Journal.2019; 43(5): 727.     CrossRef
  • Response: Increased Serum Angiopoietin-Like 6 Ahead of Metabolic Syndrome in a Prospective Cohort Study (Diabetes Metab J 2019;43:521-9)
    Jun Namkung, Kyu-Sang Park
    Diabetes & Metabolism Journal.2019; 43(5): 729.     CrossRef
Obesity and Metabolic Syndrome
Impact of Longitudinal Changes in Metabolic Syndrome Status over 2 Years on 10-Year Incident Diabetes Mellitus
Ji Hye Huh, Sung Gyun Ahn, Young In Kim, Taehwa Go, Ki-Chul Sung, Jae Hyuk Choi, Kwang Kon Koh, Jang Young Kim
Diabetes Metab J. 2019;43(4):530-538.   Published online February 20, 2019
DOI: https://doi.org/10.4093/dmj.2018.0111
  • 5,821 View
  • 66 Download
  • 20 Web of Science
  • 23 Crossref
AbstractAbstract PDFPubReader   
Background

Metabolic syndrome (MetS) is a known predictor of diabetes mellitus (DM), but whether longitudinal changes in MetS status modify the risk for DM remains unclear. We investigated whether changes in MetS status over 2 years modify the 10-year risk of incident DM.

Methods

We analyzed data from 7,317 participants aged 40 to 70 years without DM at baseline, who took part in 2001 to 2011 Korean Genome Epidemiology Study. Subjects were categorized into four groups based on repeated longitudinal assessment of MetS status over 2 years: non-MetS, resolved MetS, incident MetS, and persistent MetS. The hazard ratio (HR) of new-onset DM during 10 years was calculated in each group using Cox models.

Results

During the 10-year follow-up, 1,099 participants (15.0%) developed DM. Compared to the non-MetS group, the fully adjusted HRs for new-onset DM were 1.28 (95% confidence interval [CI], 0.92 to 1.79) in the resolved MetS group, 1.75 (95% CI, 1.30 to 2.37) in the incident MetS group, and 1.98 (95% CI, 1.50 to 2.61) in the persistent MetS group (P for trend <0.001). The risk of DM in subjects with resolved MetS was significantly attenuated compared to those with persistent MetS over 2 years. In addition, the adjusted HR for 10-year developing DM gradually increased as the number of MetS components increased 2 years later.

Conclusion

We found that discrete longitudinal changes pattern in MetS status over 2 years associated with 10-year risk of DM. These findings suggest that monitoring change of MetS status and controlling it in individuals may be important for risk prediction of DM.

Citations

Citations to this article as recorded by  
  • 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association
    Seth S. Martin, Aaron W. Aday, Zaid I. Almarzooq, Cheryl A.M. Anderson, Pankaj Arora, Christy L. Avery, Carissa M. Baker-Smith, Bethany Barone Gibbs, Andrea Z. Beaton, Amelia K. Boehme, Yvonne Commodore-Mensah, Maria E. Currie, Mitchell S.V. Elkind, Kelly
    Circulation.2024;[Epub]     CrossRef
  • Transitioning from having no metabolic abnormality nor obesity to metabolic impairment in a cohort of apparently healthy adults
    Hadas Ben-Assayag, Rafael Y. Brzezinski, Shlomo Berliner, David Zeltser, Itzhak Shapira, Ori Rogowski, Sharon Toker, Roy Eldor, Shani Shenhar-Tsarfaty
    Cardiovascular Diabetology.2023;[Epub]     CrossRef
  • Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association
    Connie W. Tsao, Aaron W. Aday, Zaid I. Almarzooq, Cheryl A.M. Anderson, Pankaj Arora, Christy L. Avery, Carissa M. Baker-Smith, Andrea Z. Beaton, Amelia K. Boehme, Alfred E. Buxton, Yvonne Commodore-Mensah, Mitchell S.V. Elkind, Kelly R. Evenson, Chete Ez
    Circulation.2023;[Epub]     CrossRef
  • The Unique Role of Self-Rated Health in Metabolic Syndrome and its Diagnostic Cardiometabolic Abnormalities: An Analysis of Population-Based Data
    K. Umeh, S. Adaji, L. Graham
    Journal of Medical Psychology.2023; 25(1): 7.     CrossRef
  • Gender differences in the impact of 3-year status changes of metabolic syndrome and its components on incident type 2 diabetes mellitus: a decade of follow-up in the Tehran Lipid and Glucose Study
    Farzad Hadaegh, Amir Abdi, Karim Kohansal, Parto Hadaegh, Fereidoun Azizi, Maryam Tohidi
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Clinical implications of changes in metabolic syndrome status after kidney transplantation: a nationwide prospective cohort study
    Yu Ho Lee, Sang Heon Song, Seung Hwan Song, Ho Sik Shin, Jaeseok Yang, Myoung Soo Kim, Hyeon Seok Hwang, Curie Ahn, Jaeseok Yang, Jin Min Kong, Oh Jung Kwon, Deok Gie Kim, Cheol-Woong Jung, Yeong Hoon Kim, Joong Kyung Kim, Chan-Duck Kim, Ji Won Min, Sung
    Nephrology Dialysis Transplantation.2023; 38(12): 2743.     CrossRef
  • Trajectory patterns of metabolic syndrome severity score and risk of type 2 diabetes
    Atieh Amouzegar, Mohammadjavad Honarvar, Safdar Masoumi, Davood Khalili, Fereidoun Azizi, Ladan Mehran
    Journal of Translational Medicine.2023;[Epub]     CrossRef
  • Differential association of metabolic syndrome and low-density lipoprotein cholesterol with incident cardiovascular disease according to sex among Koreans: a national population-based study
    Su Yong Kim, Tae-Hwa Go, Jun Hyeok Lee, Jin Sil Moon, Dae Ryong Kang, Se Jin Bae, Se-Eun Kim, Sang Jun Lee, Dong-Hyuk Cho, Young Jun Park, Young Jin Youn, Jang Young Kim, Sung Gyun Ahn
    European Journal of Preventive Cardiology.2022; 28(18): 2021.     CrossRef
  • The efficacy and safety of Dendropanax morbifera leaf extract on the metabolic syndrome: a 12-week, placebo controlled, double blind, and randomized controlled trial
    Ji Eun Jun, You-Cheol Hwang, Kyu Jeung Ahn, Ho Yeon Chung, Se Young Choung, In-Kyung Jeong
    Nutrition Research and Practice.2022; 16(1): 60.     CrossRef
  • Stability and Transformation of Metabolic Syndrome in Adolescents: A Prospective Assessment in Relation to the Change of Cardiometabolic Risk Factors
    Pei-Wen Wu, Yi-Wen Lai, Yu-Ting Chin, Sharon Tsai, Tun-Min Yang, Wei-Ting Lin, Chun-Ying Lee, Wei-Chung Tsai, Hsiao-Ling Huang, David W. Seal, Tsai-Hui Duh, Chien-Hung Lee
    Nutrients.2022; 14(4): 744.     CrossRef
  • Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association
    Connie W. Tsao, Aaron W. Aday, Zaid I. Almarzooq, Alvaro Alonso, Andrea Z. Beaton, Marcio S. Bittencourt, Amelia K. Boehme, Alfred E. Buxton, April P. Carson, Yvonne Commodore-Mensah, Mitchell S.V. Elkind, Kelly R. Evenson, Chete Eze-Nliam, Jane F. Fergus
    Circulation.2022;[Epub]     CrossRef
  • Evaluating Triglyceride and Glucose Index as a Simple and Easy-to-Calculate Marker for All-Cause and Cardiovascular Mortality
    Kyung-Soo Kim, Sangmo Hong, You-Cheol Hwang, Hong-Yup Ahn, Cheol-Young Park
    Journal of General Internal Medicine.2022; 37(16): 4153.     CrossRef
  • Nonlinear association between changes in fasting plasma glucose and the incidence of diabetes in a nondiabetic Chinese cohort
    Chenghu Huang, Chenhong Ren, Xiuping Xuan, Yi Luo, Caibi Peng
    BMC Endocrine Disorders.2022;[Epub]     CrossRef
  • The dynamics of metabolic syndrome development from its isolated components among iranian children and adolescents: Findings from 17 Years of the Tehran Lipid and Glucose Study (TLGS)
    Pezhman Bagheri, Davood Khalil, Mozhgan Seif, Esmaeil Khedmati Morasae, Ehsan Bahramali, Fereidoun Azizi, Abbas Rezaianzadeh
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2021; 15(1): 99.     CrossRef
  • Heart Disease and Stroke Statistics—2021 Update
    Salim S. Virani, Alvaro Alonso, Hugo J. Aparicio, Emelia J. Benjamin, Marcio S. Bittencourt, Clifton W. Callaway, April P. Carson, Alanna M. Chamberlain, Susan Cheng, Francesca N. Delling, Mitchell S.V. Elkind, Kelly R. Evenson, Jane F. Ferguson, Deepak K
    Circulation.2021;[Epub]     CrossRef
  • The dynamics of metabolic syndrome development from its isolated components among Iranian adults: findings from 17 years of the Tehran lipid and glucose study (TLGS)
    Davood Khalili, Pezhman Bagheri, Mozhgan Seif, Abbas Rezaianzadeh, Esmaeil Khedmati Morasae, Ehsan Bahramali, Fereidoun Azizi
    Journal of Diabetes & Metabolic Disorders.2021; 20(1): 95.     CrossRef
  • Metabolic Syndrome Fact Sheet 2021: Executive Report
    Ji Hye Huh, Dae Ryong Kang, Jang Young Kim, Kwang Kon Koh
    CardioMetabolic Syndrome Journal.2021; 1(2): 125.     CrossRef
  • The Incidence of Metabolic Syndrome and the Valid Blood Pressure Cutoff Value for Predicting Metabolic Syndrome Within the Normal Blood Pressure Range in the Population Over 40 Years Old in Guiyang, China
    Li Ma, Hong Li, Huijun Zhuang, Qiao Zhang, Nianchun Peng, Ying Hu, Na Han, Yuxing Yang, Lixin Shi
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2021; Volume 14: 2973.     CrossRef
  • Metabolic Syndrome Severity Score for Predicting Cardiovascular Events: A Nationwide Population-Based Study from Korea
    Yo Nam Jang, Jun Hyeok Lee, Jin Sil Moon, Dae Ryong Kang, Seong Yong Park, Jerim Cho, Jang-Young Kim, Ji Hye Huh
    Diabetes & Metabolism Journal.2021; 45(4): 569.     CrossRef
  • Hospitalization for heart failure incidence according to the transition in metabolic health and obesity status: a nationwide population-based study
    You-Bin Lee, Da Hye Kim, Seon Mee Kim, Nan Hee Kim, Kyung Mook Choi, Sei Hyun Baik, Yong Gyu Park, Kyungdo Han, Hye Jin Yoo
    Cardiovascular Diabetology.2020;[Epub]     CrossRef
  • Effects of tea consumption on metabolic syndrome: A systematic review and meta‐analysis of randomized clinical trials
    Wei Liu, Chunpeng Wan, Yingjie Huang, Mingxi Li
    Phytotherapy Research.2020; 34(11): 2857.     CrossRef
  • Exposure-weighted scoring for metabolic syndrome and the risk of myocardial infarction and stroke: a nationwide population-based study
    Eun Young Lee, Kyungdo Han, Da Hye Kim, Yong-Moon Park, Hyuk-Sang Kwon, Kun-Ho Yoon, Mee Kyoung Kim, Seung-Hwan Lee
    Cardiovascular Diabetology.2020;[Epub]     CrossRef
  • Changes in Metabolic Profile Over Time: Impact on the Risk of Diabetes
    Yunjung Cho, Seung-Hwan Lee
    Diabetes & Metabolism Journal.2019; 43(4): 407.     CrossRef
Short Communication
Complications
Glycosylated Hemoglobin in Subjects Affected by Iron-Deficiency Anemia
Jari Intra, Giuseppe Limonta, Fabrizio Cappellini, Maria Bertona, Paolo Brambilla
Diabetes Metab J. 2019;43(4):539-544.   Published online November 28, 2018
DOI: https://doi.org/10.4093/dmj.2018.0072
  • 5,849 View
  • 110 Download
  • 10 Web of Science
  • 13 Crossref
AbstractAbstract PDFPubReader   

Previous studies have suggested that iron-deficiency anemia affects glycosylated hemoglobin (HbA1c) measurements, but the results were contradictory. We conducted a retrospective case-control study to determine the effects of iron deficiency on HbA1c levels. Starting with the large computerized database of the Italian Hospital of Desio, including data from 2000 to 2016, all non-pregnant individuals older than 12 years of age with at least one measurement of HbA1c, cell blood count, ferritin, and fasting blood glucose on the same date of blood collection were enrolled. A total of 2,831 patients met the study criteria. Eighty-six individuals were diagnosed with iron-deficiency anemia, while 2,745 had a normal iron state. The adjusted means of HbA1c were significantly higher in anemic subjects (5.59% [37.37 mmol/mol]), than those measured in individuals without anemia (5.34% [34.81 mmol/mol]) (P<0.0001). These results suggest that clinicians should be cautious about diagnosing prediabetes and diabetes in individuals with anemia.

Citations

Citations to this article as recorded by  
  • Fingerprinting hyperglycemia using predictive modelling approach based on low-cost routine CBC and CRP diagnostics
    Amna Tahir, Kashif Asghar, Waqas Shafiq, Hijab Batool, Dilawar Khan, Omar Chughtai, Safee Ullah Chaudhary
    Scientific Reports.2024;[Epub]     CrossRef
  • Unlocking Optimal Glycemic Interpretation: Redefining HbA1c Analysis in Female Patients With Diabetes and Iron‐Deficiency Anemia Using Machine Learning Algorithms
    Kadra Mohamed Abdillahi, Fatma Ceyla Eraldemir, Irfan Kösesoy
    Journal of Clinical Laboratory Analysis.2024;[Epub]     CrossRef
  • Effect of Iron Deficiency Anemia on HbA1c Levels Among Diabetic and Nondiabetic Patients
    Kenkere Marulaiah Srinath, N. Akash, Adarsh Lakkur Siddappa, Basave Gowda Madhu, K. C. Shashidhara, Prasanna Kumar Hassan Ramaswamy
    D Y Patil Journal of Health Sciences.2024; 12(2): 51.     CrossRef
  • Management of diabetes in people with advanced chronic kidney disease
    Tahseen A. Chowdhury, Dorcas Mukuba, Mahalia Casabar, Conor Byrne, M. Magdi Yaqoob
    Diabetic Medicine.2024;[Epub]     CrossRef
  • SGLT2 Inhibitor Use and Risk of Dementia and Parkinson Disease Among Patients With Type 2 Diabetes
    Hae Kyung Kim, Geert Jan Biessels, Min Heui Yu, Namki Hong, Yong-ho Lee, Byung-Wan Lee, Eun Seok Kang, Bong-Soo Cha, Eun Jig Lee, Minyoung Lee
    Neurology.2024;[Epub]     CrossRef
  • Implications of Iron Deficiency Anaemia on Glycemic Dynamics in Diabetes Mellitus: A Critical Risk Factor in Cardiovascular Disease
    Eman Elsheikh, Sereen S Aljohani , Munirah M Alshaikhmubarak, Meshari A Alhawl, Alhanouf W Alsubaie, Norah Alsultan, Asmaa F Sharif, Sayed Ibrahim Ali
    Cureus.2023;[Epub]     CrossRef
  • Usefulness of glucose management indicator derived from continuous glucose monitoring to assess glycemic condition in hospitalized patients with diabetic kidney disease treated with insulin pumps
    Yi Lu, Qian Zhang, Xiangyu Wang, Ya Jiang, Yaoming Xue
    Journal of Diabetes and its Complications.2023; 37(11): 108613.     CrossRef
  • Serum Iron Profile in Type 2 Diabetes, A Role Beyond Anemic Marker!
    Happy Chutia, Sungdirenla Jamir, Md Yasir, Gautam Handique
    The Journal of Medical Research.2023; 9(5): 129.     CrossRef
  • Association between Anemia and Myopia in Korean Adults
    Minyi Seo, Sangshin Park
    Journal of Health Informatics and Statistics.2023; 48(4): 314.     CrossRef
  • Large-scale retrospective analyses of the effect of iron deficiency anemia on hemoglobin A1c concentrations
    Lokinendi V. Rao, George W. Pratt, Caixia Bi, Martin H. Kroll
    Clinica Chimica Acta.2022; 529: 21.     CrossRef
  • Integrity loss of glycosylated hemoglobin with deepening anemia
    Bünyamin AYDIN, Aysun GÖNDEREN
    Journal of Health Sciences and Medicine.2022; 5(3): 839.     CrossRef
  • Association between hemoglobin within the normal range and hemoglobin A1c among Chinese non-diabetes adults
    Yi Lai, Zhihong Lin, Zhongxin Zhu
    BMC Endocrine Disorders.2021;[Epub]     CrossRef
  • The Association between Daily Total Dietary Nutrient Intake and Recent Glycemic Control States of Non-Pregnant Adults 20+ Years Old from NHANES 1999–2018 (Except for 2003–2004)
    Yin Bai, Hao Zhang, Jie Yang, Lei Peng
    Nutrients.2021; 13(11): 4168.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP