Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
1 "TFAM protein"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Basic Research
Mitochondrial TFAM as a Signaling Regulator between Cellular Organelles: A Perspective on Metabolic Diseases
Jin-Ho Koh, Yong-Woon Kim, Dae-Yun Seo, Tae-Seo Sohn
Diabetes Metab J. 2021;45(6):853-865.   Published online November 22, 2021
DOI: https://doi.org/10.4093/dmj.2021.0138
  • 6,690 View
  • 275 Download
  • 14 Web of Science
  • 15 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFPubReader   ePub   
Tissues actively involved in energy metabolism are more likely to face metabolic challenges from bioenergetic substrates and are susceptible to mitochondrial dysfunction, leading to metabolic diseases. The mitochondria receive signals regarding the metabolic states in cells and transmit them to the nucleus or endoplasmic reticulum (ER) using calcium (Ca2+) for appropriate responses. Overflux of Ca2+ in the mitochondria or dysregulation of the signaling to the nucleus and ER could increase the incidence of metabolic diseases including insulin resistance and type 2 diabetes mellitus. Mitochondrial transcription factor A (Tfam) may regulate Ca2+ flux via changing the mitochondrial membrane potential and signals to other organelles such as the nucleus and ER. Since Tfam is involved in metabolic function in the mitochondria, here, we discuss the contribution of Tfam in coordinating mitochondria-ER activities for Ca2+ flux and describe the mechanisms by which Tfam affects mitochondrial Ca2+ flux in response to metabolic challenges.

Citations

Citations to this article as recorded by  
  • Targeted metabolomics reveals the aberrant energy status in diabetic peripheral neuropathy and the neuroprotective mechanism of traditional Chinese medicine JinMaiTong
    Bingjia Zhao, Qian Zhang, Yiqian He, Weifang Cao, Wei Song, Xiaochun Liang
    Journal of Pharmaceutical Analysis.2024; 14(2): 225.     CrossRef
  • Mitochondrial damage‐associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus
    Yan Wang, Jingwu Wang, Si‐Yu Tao, Zhengting Liang, Rong xie, Nan‐nan Liu, Ruxue Deng, Yuelin Zhang, Deqiang Deng, Guangjian Jiang
    Diabetes/Metabolism Research and Reviews.2024;[Epub]     CrossRef
  • Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging
    Hiroshi Kobayashi, Chiharu Yoshimoto, Sho Matsubara, Hiroshi Shigetomi, Shogo Imanaka
    Reproductive Sciences.2024; 31(4): 906.     CrossRef
  • When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness
    May-Kristin Torp, Kåre-Olav Stensløkken, Jarle Vaage
    Journal of Intensive Care Medicine.2024;[Epub]     CrossRef
  • Attenuating mitochondrial dysfunction and morphological disruption with PT320 delays dopamine degeneration in MitoPark mice
    Vicki Wang, Kuan-Yin Tseng, Tung-Tai Kuo, Eagle Yi-Kung Huang, Kuo-Lun Lan, Zi-Rong Chen, Kuo-Hsing Ma, Nigel H. Greig, Jin Jung, Ho-II Choi, Lars Olson, Barry J. Hoffer, Yuan-Hao Chen
    Journal of Biomedical Science.2024;[Epub]     CrossRef
  • Effects of the anti-inflammatory drug celecoxib on cell death signaling in human colon cancer
    Ryuto Maruyama, Yuki Kiyohara, Yasuhiro Kudo, Tomoyasu Sugiyama
    Naunyn-Schmiedeberg's Archives of Pharmacology.2023; 396(6): 1171.     CrossRef
  • gp130 Activates Mitochondrial Dynamics for Hepatocyte Survival in a Model of Steatohepatitis
    Daria Shunkina, Anastasia Dakhnevich, Egor Shunkin, Olga Khaziakhmatova, Valeria Shupletsova, Maria Vulf, Alexandra Komar, Elena Kirienkova, Larisa Litvinova
    Biomedicines.2023; 11(2): 396.     CrossRef
  • Pharmacological Activation of Rev-erbα Attenuates Doxorubicin-Induced Cardiotoxicity by PGC-1α Signaling Pathway
    Runmei Zou, Shuo Wang, Hong Cai, Yuwen Wang, Cheng Wang, Vivek Pandey
    Cardiovascular Therapeutics.2023; 2023: 1.     CrossRef
  • Protective Effect of Ergothioneine against 7-Ketocholesterol-Induced Mitochondrial Damage in hCMEC/D3 Human Brain Endothelial Cells
    Damien Meng-Kiat Leow, Irwin Kee-Mun Cheah, Zachary Wei-Jie Fong, Barry Halliwell, Wei-Yi Ong
    International Journal of Molecular Sciences.2023; 24(6): 5498.     CrossRef
  • Effect of PPARγ on oxidative stress in diabetes-related dry eye
    Jing Wang, Shuangping Chen, Xiuxiu Zhao, Qian Guo, Ruibo Yang, Chen Zhang, Yue Huang, Lechong Ma, Shaozhen Zhao
    Experimental Eye Research.2023; 231: 109498.     CrossRef
  • Chiisanoside Mediates the Parkin/ZNF746/PGC-1α Axis by Downregulating MiR-181a to Improve Mitochondrial Biogenesis in 6-OHDA-Caused Neurotoxicity Models In Vitro and In Vivo: Suggestions for Prevention of Parkinson’s Disease
    Yu-Ling Hsu, Hui-Jye Chen, Jia-Xin Gao, Ming-Yang Yang, Ru-Huei Fu
    Antioxidants.2023; 12(9): 1782.     CrossRef
  • TBBPA causes apoptosis in grass carp hepatocytes involving destroyed ER-mitochondrial function
    Dongxu Han, Naixi Yang, Huanyi Liu, Yujie Yao, Shiwen Xu
    Chemosphere.2023; 341: 139974.     CrossRef
  • The Protective Mechanism of TFAM on Mitochondrial DNA and its Role in Neurodegenerative Diseases
    Ying Song, Wenjun Wang, Beibei Wang, Qiwen Shi
    Molecular Neurobiology.2023;[Epub]     CrossRef
  • Impact of Roux-en-Y Gastric Bypass on Mitochondrial Biogenesis and Dynamics in Leukocytes of Obese Women
    Zaida Abad-Jiménez, Teresa Vezza, Sandra López-Domènech, Meylin Fernández-Reyes, Francisco Canet, Carlos Morillas, Segundo Ángel Gómez-Abril, Celia Bañuls, Víctor M. Víctor, Milagros Rocha
    Antioxidants.2022; 11(7): 1302.     CrossRef
  • The Effects of Galgunhwanggumhwangryun-tang on Glucose and Energy Metabolism in C2C12 Myotubes
    Jihong Oh, Song-Yi Han, Soo Kyoung Lim, Hojun Kim
    Journal of Korean Medicine for Obesity Research.2022; 22(2): 93.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal