Vision loss in diabetic retinopathy (DR) is ascribed primarily to retinal vascular abnormalities—including hyperpermeability, hypoperfusion, and neoangiogenesis—that eventually lead to anatomical and functional alterations in retinal neurons and glial cells. Recent advances in retinal imaging systems using optical coherence tomography technologies and pharmacological treatments using anti-vascular endothelial growth factor drugs and corticosteroids have revolutionized the clinical management of DR. However, the cellular and molecular mechanisms underlying the pathophysiology of DR are not fully determined, largely because hyperglycemic animal models only reproduce limited aspects of subclinical and early DR. Conversely, non-diabetic mouse models that represent the hallmark vascular disorders in DR, such as pericyte deficiency and retinal ischemia, have provided clues toward an understanding of the sequential events that are responsible for vision-impairing conditions. In this review, we summarize the clinical manifestations and treatment modalities of DR, discuss current and emerging concepts with regard to the pathophysiology of DR, and introduce perspectives on the development of new drugs, emphasizing the breakdown of the blood-retina barrier and retinal neovascularization.
Citations
This is part of a prospective study carried out as a national project to secure standardized public resources for type 2 diabetes mellitus (T2DM) patients in Korea. We compared various characteristics of long-standing T2DM patients with diabetic retinopathy (DR) and macular edema (ME).
From September 2014 to July 2015, T2DM patients with disease duration of at least 15 years were recruited at a single university hospital. Clinical data and samples were collected according to the common data elements and standards of procedure developed by the Korean Diabetes Association Research Council. Each participant was assessed by ophthalmologists for DR and ME.
Among 220 registered patients, 183 completed the ophthalmologic assessment. DR was associated with longer disease duration (odds ratio [OR], 1.071; 95% confidence interval [CI], 1.001 to 1.147 for non-proliferative diabetic retinopathy [NPDR]) (OR, 1.142; 95% CI, 1.051 to 1.242 for proliferative diabetic retinopathy [PDR]) and the use of long-acting insulin (OR, 4.559; 95% CI, 1.672 to 12.427 for NPDR) (OR, 4.783; 95% CI, 1.581 to 14.474 for PDR), but a lower prevalence of a family history of cancer (OR, 0.310; 95% CI, 0.119 to 0.809 for NPDR) (OR, 0.206; 95% CI, 0.063 to 0.673 for PDR). ME was associated with higher glycosylated hemoglobin levels (OR, 1.380; 95% CI, 1.032 to 1.845) and the use of rapid-acting insulin (OR, 5.211; 95% CI, 1.445 to 18.794).
Various clinical features were associated with DR and ME. Additional epidemiological and biorepository-based studies using this cohort are being conducted to deepen our understanding of diabetic complications in Korea.
Citations
Vision loss in diabetic retinopathy (DR) is attributable to retinal vascular disorders that result in macular edema and neoangiogenesis. In addition to laser photocoagulation therapy, intraocular injections of antivascular endothelial growth factor drugs have contributed to the treatment of these disease conditions. Nonetheless, the clinical feasibility of intraocular drug administration has raised an increasing demand to develop alternative drugs that can fundamentally ameliorate the retinal vascular dysfunctions in DR. For this purpose, experimental animal models that reproduce human DR would be of clinical benefit. Despite the unavailability of DR models in rats or mice, pharmacological and genetic manipulations without hyperglycemia have successfully recapitulated retinal edema and neoangiogenesis in postnatal mouse retinas, thereby enabling the understanding of the pathophysiology underlying DR. This article highlights the utility of experimental mouse models of retinal vascular abnormalities and discusses cellular and molecular mechanisms responsible for the onset and progression of DR. These approaches will lead to the identification of novel drug targets for the restoration of vascular integrity and regeneration of functional capillaries in DR.
Citations