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Mitochondria are complex metabolic organelles with manifold pathophysiological implications in diabetes. Currently published 
mitochondrial-encoded peptides, which are expressed from the mitochondrial open reading frame of the 12S ribosomal RNA 
type-c (MOTS-c), 16S rRNA (humanin and short humanin like peptide 1-6 [SHLP1-6]), or small human mitochondrial open 
reading frame over serine tRNA (SHMOOSE) are associated with regulation of cellular metabolism and insulin action in age-re-
lated diseases, such as type 2 diabetes mellitus. This review focuses mainly on recent advances in MOTS-c research with regards 
to diabetes, including both type 1 and type 2. The emerging understanding of MOTS-c in diabetes may provide insight into the 
development of new therapies for diabetes and other age or senescence-related diseases. 
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INTRODUCTION

The prevalence of diabetes has risen relentlessly and predispos-
es an approximate 350 million individuals to various types of 
devastating complications [1,2]. Mitochondria are organelles 
with central roles in regulating cellular metabolism and death. 
Thus, mitochondrial dysfunction, which includes genetic alter-
ations in mitochondrial DNA (mtDNA) and dysregulated mi-
tochondrial-related activities, could lead to a vast array of 
health concerns, such as diabetes [3]. First, genetic alterations 
in mtDNA, including mtDNA point mutations, diabetes-relat-
ed mtDNA polymorphisms, ethnicity-specific mtDNA hap-
logroups, and low mtDNA copy number, have been reported 
to be associated with defective insulin secretion, insulin resis-
tance, or both [4-8]. Second, dysregulated mitochondrial activ-
ities such as mitochondrial fusion/fission, mitochondrial oxi-
dative stress, and decreased nicotinamide adenine dinucleotide 

(NAD+) levels correlate with the increased risk of diabetes [9-
13]. Considering these pathogenetic links between diabetes 
and mitochondria, it is plausible that peptides derived from 
mtDNA play a crucial role in the pathogenesis of diabetes.

MITOCHONDRIAL-ENCODED PEPTIDES

There are currently nine published mitochondrial-encoded 
peptides: humanin (HN), mitochondrial open reading frame 
of the 12S ribosomal RNA type-c (MOTS-c), short humanin 
like peptides (SHLPs) 1-6, and small human mitochondrial 
open reading frame over serine tRNA (SHMOOSE), which are 
composed of less than 58 amino acids [14-18]. These micro-
proteins are found intracellularly or in circulation and target 
various tissues, including skeletal muscle, liver, brain, and im-
mune cells [14,15,17,18]. MOTS-c is composed of 16 amino 
acids and has an α-helical structure [14], which is the most 
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common secondary structure in naturally-occurring proteins 
[19-21]. This simple structure of MOTS-c imbues great advan-
tages as a drug. In fact, the α-helices appear to mediate protein 
folding and protein-protein interactions that are relevant to 
various physiological functions and diseases [22]. In addition 
to its structural advantage, MOTS-c interact with and regulate 
many different nuclear genome-encoded proteins such as 
mechanistic target of rapamycin complex 1 (mTORC1) and 
AMP-activated protein kinase (AMPK). These two kinases are 
responsible for regulating metabolic adaptability and age-relat-
ed diseases. MOTS-c controls these two kinases and can pre-
vent both diet-induced and T-cell-induced diabetes in mouse 
models [14,15]. Here, we will focus on the therapeutic poten-
tial of MOTS-c in diabetes and age-related diseases. 

TYPE 1 DIABETES MELLITUS AND MOTS-c

Type 1 diabetes mellitus (T1DM) is a T-cell-mediated autoim-
mune disease characterized by β-cell destruction [2]. Pancreat-
ic infiltration of autoreactive T-cells (CD4+, CD8+ T-cells) orig-
inated from lymphoid organs are thought to be responsible for 
the β-cell destruction (Fig. 1) [23]. Emerging evidence suggests 
that mitochondria play a key role in the pathogenesis of auto-
immune disease, including T1DM [3]. It is reported that altera-
tions in mitochondrial electron transport [24], mitochondrial 
reactive oxygen species (mtROS) [25], mitochondrial nitric ox-
ide (mtNO) [26,27], and mitochondrial hyperpolarization [28] 
of β-cells or immune cells (i.e., T cells) can lead to the patho-
genesis of T1DM. These alterations in mitochondrial function 
and T cell-induced T1DM pathogenesis facilitate the activation 
and recruitment of T-cells to destroy insulin-secreting pancre-
atic β-cells. Together, these observations indicate a link be-
tween mitochondria and diabetes.

The role of HN and MOTS-c in T1DM has been investigated 
using the non-obese diabetic (NOD) mouse model of the dis-
ease. HN treatment (n=10/group, 2.0 mg/kg/day; intraperitone-
al [IP]) in 5-week-old NOD female mice significantly improved 
glucose homeostasis, with 70% being normoglycemic with HN 
treatment compared to 40% in the control group [29]. HN 
treatment decreased cytokine (tumor necrosis factor alpha, in-
terleukin gamma [IFN-γ])-induced β-cell apoptosis measured 
by caspase 3/7 activity, improved glucose tolerance measured 
by intraperitoneal glucose tolerance test (IPGTT), lowered the 
degree of insulitis, and delayed the onset of diabetes in female 
NOD mice [29]. As the pathogenesis of T1DM is highly associ-

ated with immune cell infiltration, it is possible that HN could 
regulate immune cell proliferation and function. However, it 
was unknown whether mitochondrial-encoded peptide treat-
ment regulates proinflammatory immune cells to prevent au-
toimmune disease, such as T1DM. To answer this question, we 
assessed the immunoregulatory role of another mitochondrial-
encoded peptide, MOTS-c, in NOD mice [14]. We adminis-
tered MOTS-c (n=28/group, 0.5 mg/kg/day; IP) in 7-week-old 
female NOD mice until 18 or 30 weeks of age. MOTS-c treat-
ment delayed the onset of autoimmune diabetes in both 18- 
and 30-week-old NOD mice [14]. MOTS-c improved glucose 
tolerance and insulin secretion measured by IPGTT and serum 
insulin, respectively. Also, the treatment of MOTS-c protected 
pancreatic β-cells against proinflammatory CD4+ IFN-γ+ (Th1 
cells) and cytotoxic CD8+ T-cells by lowering the augmentation 
of T-cells around the pancreatic islets (Fig. 1) [14]. Protein 
modeling predicted the α-helical domain of MOTS-c to bind 
Raptor through side chain-side chain interaction. The binding 
of MOTS-c to Raptor may act as a competitive inhibitor that 
prevents the binding of TOR signaling (TOS) motifs of 4E 
binding protein 1 (4E-BP1), S6 kinase (S6K), and proline-rich 
AKT substrate (PRAS) to Raptor. Consistently, MOTS-c inhib-
ited mTORC1 activation and decreased T-cell glycolysis, Th1 
differentiation, and T-cell activation. Furthermore, MOTS-c 
regulated IFNG and forkhead box P3 (FOXP3) expression in 
spleen-derived T-cells from C57BL/6J and Jurkat cells. MOTS-
c mutants that lack the hydrophobic core (8YIFY11 to 8AAAA11) 
diminished its inhibitory effect on mTORC1 signaling and 
IFNG FOXP3 expression. Adoptive transfer of splenocytes 
from MOTS-c-treated NOD-severe combined immunodefi-
ciency (SCID) mice did not induce diabetes in the immuno-
compromised NOD-SCID mice, in part, by increasing the pro-
portion of pancreatic Foxp3+ Treg cells (Fig. 1) [14]. Further-
more, treatment of MOTS-c prevented the activation of human 
T1DM patients derived T cells [14]. Together, we unveiled that 
MOTS-c has a robust immunoregulatory function in autoim-
mune T1DM. 

Two human T1DM studies suggest a potential link between 
T1DM pathogenesis and circulating mitochondrial-encoded 
peptides levels. One study enrolled 21 to 25 year old men and 
women who were T1DM patients (n=41) or healthy (n=21) to 
measure HN levels in serum. Circulating HN levels of men with 
T1DM (1,016±139 pg/mL, n=23) were higher compared to 
those of healthy men (762±154 pg/mL, n=10) [30]. In line 
with previous reports, we compared serum MOTS-c levels in 
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human subjects with and without T1DM. Unlike HN, serum 
MOTS-c levels were lower in T1DM patients compared to 
healthy controls [14]. Overall, these data suggest a connection 
between circulating mitochondrial-encoded peptides and the 
pathogenesis of autoimmune diabetes. 

TYPE 2 DIABETES MELLITUS AND MOTS-c

Type 2 diabetes mellitus (T2DM) is characterized by the dys-
regulation of multiple metabolic pathways involved in im-
paired insulin secretion, insulin resistance, or a combination of 

Fig. 1. Mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c) prevents type 1 diabetes mellitus (T1DM). 
T1DM is an autoimmune disease. Activated autoreactive T-cells such as Th1 cells from secondary lymphoid organs (i.e., spleen or 
pancreatic lymph nodes) infiltrate into the pancreas and cause β-cell destruction. MOTS-c regulates T-cell differentiation and ac-
tivation (e.g., upregulation of Treg cells) in an mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner and 
prevents pancreatic infiltration of autoreactive T-cells in non-obese diabetic (NOD) mice. MOTS-c inhibits mTORC1 to lower 
glycolysis, which influences T-cell differentiation and activation. Inhibition of mTORC1 results in lowered glycolysis, lowered in-
terleukin gamma (IFN-γ), and increased forkhead box P3 (Foxp3) expression level. As a result, MOTS-c treatment in T-cells low-
ers glycolysis to favor Foxp3+ Treg differentiation and lowers T-cell activation in NOD mice and T1DM patients. TCR, T-cell re-
ceptor; 4E-BP1, 4E binding protein 1; S6K, S6 kinase.
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both [1]. Both impaired insulin secretion and insulin resis-
tance may result from mitochondrial dysfunction, high pro-
duction of reactive oxygen species, and low levels of adenosine 
triphosphate [31,32]. Over the past 30 years, numerous studies 
have examined the relationship between mitochondria, mtD-
NA, and T2DM. In a population-based prospective cohort 
study, newly diagnosed T2DM patients had 25% lower mtD-
NA copy number in peripheral blood mononuclear cells 
(PBMCs) compared to a non-diabetic group (102.8±41.5 vs. 
137.8±67.7 copies/pg template DNA) [33]. Furthermore, de-
creased mtDNA copy number correlated with waist-hip cir-
cumference ratio, fasting hyperglycemia, and high blood pres-
sure [33]. In another population-based cohort study, the mtD-
NA copy number in peripheral blood cells of offspring of dia-
betic or non-diabetic patients were compared. All subjects 
showed normoglycemia, but the mtDNA copy number of 
PBMCs was decreased in the offspring of diabetic patients 
compared to those of non-diabetic healthy controls [34]. Simi-
lar findings were also observed in healthy young men, whereby 
the PBMC mtDNA copy number correlated with insulin sensi-
tivity, insulin secretion, and fat oxidation rate [35,36], consis-
tent with other reports from many other groups [3,4,17,28,31, 
32,37-47]. Taken together, mitochondria and mtDNA derived 
factors likely play crucial roles in the pathogenesis of T2DM 
[4,43]. 

MOTS-c is a mitochondrial-encoded peptide that is found 
in multiple types of cells [14,15,17,48-57]. Circulating MOTS-
c levels have been measured in individuals with T2DM, obesi-
ty, and sleep apnea [49,51,52,55-58]. In a cross-sectional study, 
225 subjects (healthy controls, 68; pre-diabetes, 33; T2DM 
with glycosylated hemoglobin [HbA1c] <7%, 31; and >7%, 
93) serum MOTS-c levels were lower in patients with inade-
quately controlled T2DM (HbA1c >7%) [58]. In another study 
with 97 subjects (13 obese female children, 27 obese male chil-
dren; and 17 healthy female and 40 healthy male children, age 
between 5 and 14 years old), serum MOTS-c levels were sig-
nificantly lower in the obese group compared with the control 
group (472.61±22.83 ng/mL vs. 561.64±19.19 ng/mL, P< 
0.01). There was a difference between non-obese and obese 
men in terms of the serum MOTS-c concentration, but not in 
women [52]. These human studies suggest a potential relation-
ship between circulating MOTS-c levels and obesity or T2DM 
sexual dimorphism. The mechanism of MOTS-c in association 
with T2DM pathologies has been studied. MOTS-c has been 
reported to reduce insulin resistance by targeting the skeletal 

muscle in mice fed a high-fat diet (Fig. 2) [15]. MOTS-c is in-
tertwined with the folate cycle, 5-aminoimi-dazole-4-
carboxamide-1-β-D-ribofuranoside (AICAR), and AMPK sig-
naling. It can promote AICAR accumulation, AMPK activa-
tion, and the translocation of glucose transporter type 4 
(GLUT4) to the plasma membrane in muscle cells (Fig. 2) [15]. 
Increased expression and membrane localization of GLUT4 
facilitates glucose uptake into muscle cells to support adaptive 
metabolism and prevents hyperinsulinemia [15]. MOTS-c can 
regulate nuclear genes associated with metabolic stress, such as 
activating transcription factor 1 (ATF1) and nuclear factor-
erythroid factor 2-related factor 2 (NRF2), by translocating to 
the nucleus and interacting with chromatin [54]. These studies 
suggest that MOTS-c is a novel metabolic regulator that can be 
a therapeutic target for T2DM.

AGING AND MOTS-c

Emerging studies increasingly connect the functions of MOTS-
c to aging. Fuku et al. [53], showed that Asian centenarians 
have a different variant of a polymorphism located in the open 
reading frame of MOTS-c, suggesting a close relationship be-
tween the MOTS-c variant and exceptional longevity in hu-
mans. Notably, the hydrophobic and cationic domains of 
MOTS-c (8YIFY11 and 13RKLR16, respectively) have key func-
tional roles. The loss of the hydrophobic domain by substitut-
ing the residues with alanine (8YIFY11>8AAAA11) revealed that 
the hydrophobic domain is required for its nuclear transloca-
tion and nuclear gene regulation [54]. This was confirmed in 
T-cells (Jurkat), whereby the overexpression of MOTS-c in-
creased oxidative phosphorylation (OXPHOS) and decreased 
glycolysis. However, the overexpression of the MOTS-c mutant 
that lacked the hydrophobic domain (8AAAA11) did not exhib-
it the metabolic shift from glycolysis to OXPHOS [14]. Yet, al-
though these studies focused on the nuclear and metabolic 
roles of MOTS-c, it can be inferred that MOTS-c polymor-
phisms can have a functional impact, including metabolism 
and adaptive responses. Other mtDNA polymorphisms also 
contribute to T2DM risk in both European (m.4216T>C and 
m.4917A>G variants) and Asian populations (N9a hap-
logroup) [59,60]. Further studies are needed to evaluate the 
mechanistic connection between mtDNA polymorphisms and 
mitochondrial-encoded peptides in T2DM.

One of the major changes that occur during aging is the dys-
regulation of the immune response that leads to a chronic low-
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grade inflammatory state, which is thought to be a major risk 
factor for multiple chronic age-related dysfunctions and/or 
diseases, including hair loss, neurodegeneration, cancer, osteo-
porosis, cardiovascular disease, atherosclerosis, sarcopenia, 
and T2DM (Fig. 3) [15,49,51,52,55,56,61-66]. Interestingly, the 

discovery of MOTS-c was inspired by a study on inflammatory 
responses [15]. Tsuzuki et al. [67] reported that transcripts 
from the mitochondrial ribosomal genes were induced under 
interferon-stimulated conditions in monocyte-like cells. To 
test the hypothesis that mitochondrial-encoded peptides are 

Fig. 2. Mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c) reduces insulin resistance in high-fat diet 
(HFD) induced obese mice. Obesity is associated with increased insulin resistance. MOTS-c targets the skeletal muscle to regulate 
metabolic homeostasis. MOTS-c increase 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and activates 
AMP-activated protein kinase (AMPK). This leads to the upregulation of glucose transporter type 4 (GLUT4) expression level in 
muscle cells. GLUT4 is a glucose transporter that is responsible for glucose uptake in the skeletal muscle and adipose tissues. 
MOTS-c treatment in HFD induced obese mice prevents obesity and hyperinsulinemia by regulating GLUT4 in an AMPK-de-
pendent manner. PI3K, phosphoinositide 3-kinase; GSV, GLUT4 storage vesicle. 
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associated with inflammatory processes, we measured several 
cytokines in NOD mice after MOTS-c treatment. We found 
that MOTS-c treatment in NOD mice can reduce peri-insulitis 
in pancreatic islets, regulate cytokines such as interleukin-10 
(IL-10) and IFN-γ in serum and isolated splenic T-cells, and 
prevent T-cell-driven disease transfer to NOD-SCID mice 
[14]. This study was one of the first to reveal the direct regula-
tion of immune cells by mitochondrial-encoded peptides. No-
tably, interferon responses and inflammation are hallmarks of 
cellular senescence and aging [68-70]. 

Other studies corroborate the relationship between aging, 
senescence, and MOTS-c. MOTS-c expression is lower in se-
nescent human fibroblast cells induced by replication stress 
[71]. In mouse skeletal muscle and circulation, MOTS-c level 
also declined with age [15]. In human subjects of young (18 to 
30 years), middle (45 to 55 years), and older (70 to 81 years) 

age (n=25/group), the plasma MOTS-c level was reduced with 
aging (young vs. middle, P<0.01; young vs. older, P<0.001; 
middle vs. older, P<0.05) [15]. Recent findings showed that 2 
weeks of systemic MOTS-c treatment significantly increases 
the physical capacity of old mice (22 months), allowing them 
to double their running time on a treadmill and effectively out-
run their middle-aged (12 months) counterparts [72]. Notably, 
in humans, exercise (i.e., stationary bicycle) considerably raises 
the levels of endogenous MOTS-c in the skeletal muscle and in 
circulation, indicating interorgan mitochondrial communica-
tion [72]; parallel results have been reported in rodents [73,74]. 
Indeed, exercise also increases endogenous levels of MOTS-c 
in hypothalamic proopiomelanocortin (POMC) neurons by 
exercise-related cytokines such as IL-6. MOTS-c stimulates 
POMC transcription in an IL-6-dependent manner to increase 
sympathetic nerve activity, which plays a crucial role in exer-

Fig. 3. Mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c) is a potential target against aging-related 
diseases. Aging is associated with number of diseases. Traditionally, drug discovery efforts target each of these diseases individu-
ally. A complementary approach is to develop a therapeutic reagent to treat the root of these diseases, dubbed geroscience. 
MOTS-c is a potential therapeutic target for multiple aging-related diseases, including neurodegeneration, osteoporosis, cardio-
vascular disease, atherosclerosis, sarcopenia, type 2 diabetes mellitus, and obesity. Future studies are needed to unveil the efficacy 
and safety of MOTS-c treatment for aging-related diseases.
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cise [75,76]. Late-life initiated (24 months) intermittent 
MOTS-c treatment (3× weekly) increased healthy lifespan in 
mice, suggesting the potential for further development as an 
anti-aging intervention [72]. Further studies are needed to un-
veil the mechanisms by which MOTS-c regulates inflamma-
tion, cellular senescence, and aging [62]. 

FUTURE THERAPEUTICS AND MOTS-c

The discovery of MOTS-c and other mitochondrial-encoded 
peptides may pave a new conceptual way for the treatment of 
metabolic, age-related, and autoimmune diseases. Pre-clinical 
data on MOTS-c holds much therapeutic potential as they 
demonstrate effective prevention/protection against aging and 
a broad range of age-related dysfunction and diseases. Several 
groups have reported the beneficial role of MOTS-c treatment 
using various animal models, including ovariectomy-induced 
metabolic dysfunction [63] and ovariectomy-induced bone 
loss (Fig. 3) [64]. Clinical trials to test the therapeutic potential 
of MOTS-c is ongoing and currently limited, including a clini-
cal trial using a MOTS-c analog for fatty liver and obesity 
(clinical trial #NCT03998514). Notably, we previously showed 
that in human 143B-osteosarcoma-origin cybrid cells harbor-
ing the mtDNA 3243A>G mutation Rho0 cells, MOTS-c ex-
pression was decreased. In the cybrid cells, treatment or over-
expression of MOTS-c was able to increase mitochondrial com-
plex subunits (ubiquinol-cytochrome c reductase, complex III; 
and NADH:ubiquinone oxidoreductase subunit A1, complex I) 
mRNA expression levels, but it did not show metabolic effects 
[48]. This suggest that MOTS-c may have an impact on mito-
chondrial encephalopathy, lactic acidosis, and stroke-like epi-
sodes (MELAS) syndrome caused by the mtDNA 3243A>G 
mutation in tRNAleu, but the underlying functional connection 
still remains unknown. 

MOTS-c is the first mitochondrial-encoded peptide that has 
been subjected to clinical trials, uncovering the mitochondrial 
genome as a source of therapeutics and drug targets. Peptides 
are vital physiological mediators that are attractive therapeutic 
candidates with their high potency, specificity, and low toxicity. 
Nonetheless, there is still much to understand about MOTS-c 
and other mitochondrial-encoded peptides, including their 
basic molecular mechanisms, stability in biological systems, 
oral bioavailability, and relevance to a broad range of diseases 
and conditions. 
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