

Supplementary Table 4. Glucose and insulin levels after chronic administration of PERKi in a mouse model of type 2 diabetes mellitus

Variable	Control	DM-vehicle	DM-PERKi	P value ^a	P value ^b
Glucose 0 min, mg/dL	82.5 ± 18.1	272.1 ± 101.4	147.8 ± 67.8	< 0.05	< 0.05
Glucose 30 min, mg/dL	274.5 ± 43.8	542.7 ± 86.4	405.7 ± 97.9	< 0.05	< 0.05
Insulin 0 min, ng/mL	0.26 ± 0.18	0.20 ± 0.14	0.24 ± 0.15	NS	NS
Insulin 30 min, ng/mL	0.41 ± 0.15	0.22 ± 0.14	0.62 ± 0.47	NS	< 0.05

Values are presented as mean \pm standard deviation. Adapted from Kim et al. [10], with permission from Elsevier. A high-fat diet for 6 weeks combined with streptozotocin injection induced obese diabetic mice. GSK2656157 at 10 mg/kg/day (n=15) was administrated via oral gavage for 8 weeks and the effects were compared to those of vehicle (n=15). Control mice (n=13) were on a normal chow and received vehicle administration. Intraperitoneal glucose tolerance test using 1 g/kg of glucose injection was done. One-way analysis of variance (ANOVA) with Bonferroni posttests was applied.

PERKi, pancreatic endoplasmic reticulum kinase inhibitor; DM, diabetes mellitus.

^aControl vs. DM-vehicle, ^bDM-vehicle vs. DM-PERKi.