Fig. 1Nutrient regulation of autophagy. Autohagosome formation is regulated by a number of autophagy-related proteins at multiple steps. Initiation of autophagy via Ulk1 complex is negatively and positively regulated by mammalian target of rapamycin complex 1 (mTORC1)- and 5'-AMP-activated protein kinase (AMPK)-dependent phosphorylation, respectively. Sirt1-dependent deacetylation is also involved in the activation of autophagy. Origin of autophagosome membrane is endoplasmic reticulum (ER) membrane. Autophagosome fuses with lysosome to form autolysosome and is finally degraded by lysosome enzymes. NAD, nicotinamide adenine dinucleotide; AMP, adenosine monophosphate; ATP, adenosine triphosphate; Atg, autophagy-related gene; LC3, light chain 3; Ulk1, unc-51-like kinase 1; PE, phosphatidylethanolamine; FOXO3a, forkhead box O3a.
Fig. 2Autophagy activity determined using green fluorescent protein light chain 3 (GFP-LC3) transgenic mouse. Autopphagome can be detected as GFP-LC3 dots in tissues of this mouse model. Autophagosomes formation is constitutively observed in podocytes even under ad-libitum condition. In contrast, autophagy can be observed in proximal tubular cells exposed to 48-hour fasting. The white dotted line box indicates the area for each enlarged figure. Blue signal, DAPI stain to visualize nuclei. Red signal, nidogen stain to visualize basement membrane. Green signal, GFP signal indicating LC3 protein.
Fig. 3Podocytes and proximal tubular cells have basal and stress-responsive autophagy, which is essential to maintain cellular homeostasis. Some pathological situations such as diabetes, obesity, and aging suppresses both basal and stress-responsive autophagy, leading to massive proteinuria and severe tubular cell damage.