Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal



Page Path
HOME > Diabetes Metab J > Volume 38(5); 2014 > Article
Pathophysiology Hyperglycemia as a Risk Factor for Cancer Progression
Tae Young Ryu1, Jiyoung Park1, Philipp E. Scherer2
Diabetes & Metabolism Journal 2014;38(5):330-336.
Published online: October 17, 2014
  • 113 Download
  • 204 Web of Science
  • 198 Crossref
  • 214 Scopus

1Department of Biological Sciences, Ulsan National Institute of Science and Technology School of Life Sciences, Ulsan, Korea.

2Touchstone Diabetes Center, Department of Internal Medicine, Cell Biology and Simmons Cancer, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Corresponding author: Jiyoung Park. Department of Biological Sciences, Ulsan National Institute of Science and Technology School of Life Sciences, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Korea.
Corresponding author: Philipp E. Scherer. Touchstone Diabetes Center, Department of Internal Medicine, Cell Biology and Simmons Cancer, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8549, USA,

Copyright © 2014 Korean Diabetes Association

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • As the prevalence of diabetes mellitus is substantially increasing worldwide, associated diseases such as renal failure, cardiovascular diseases, fatty liver, and cancers have also increased. A number of cancers such as pancreatic, liver, breast, and female reproductive cancers have shown an increased prevalence and a higher mortality rate in diabetic patients compared to healthy subjects. Thus, this suggests an association between diabetes, especially type 2 diabetes and cancer incidence and progression. Recent studies have suggested that hyperinsulinemia, chronic inflammation and hyperglycemia, all frequently seen in diabetics, may lead to increased tumor growth; the underlying molecular mechanisms of this association are not fully understood. In particular, chronic hyperglycemic episodes could serve as a direct or indirect mediator of the increase in tumor cell growth. Here, we will discuss our current understanding how hyperglycemia and cancer risk may be linked, and what the implications are for the treatment of diabetic cancer patients.
Extensive epidemiological studies suggest that certain types of cancers show a higher prevalence rate and a higher risk of mortality in a patient population suffering from diabetes mellitus (DM) [1]. Liver and pancreatic cancers show a strong relationship with DM, and both of these organs play a central role in the pathophysiology of diabetes [1,2,3]. Other cancers, such as colorectal, breast, endometrial and renal, and renal cancer also show an association with DM, whereas prostate cancer appears to have a negative association with DM [4]. Thus, it is now evident that a higher cancer risk and mortality rate is observed in DM patients compared to euglycemic individuals. Furthermore, DM and cancer are frequently diagnosed in the same individuals [5], suggesting that those two diseases share the common risk factors and pathophysiological mechanisms. The underlying mechanisms behind this association have not been fully elucidated; however, plausible connections consist of hyperinsulinemia, insulin resistance, chronic inflammation, oxidative stress, and hyperglycemia; all of these factors potentially promote tumor progression in various ways [6,7,8,9,10]. The impact of insulin, insulin-like growth factor-1 (IGF-1) and chronic inflammation in cancer progression has been extensively studied, whereas effects of hyperglycemia on cancer have received less attention, although hyperglycemia is one of the most widely studied metabolic changes in DM.
Hyperglycemia is defined as a state of excess glucose concentration in circulation, a hallmark for both type 1 DM and type 2 DM. Due to insufficient insulin production in pancreatic β cells, hyperglycemia develops in type 1 DM. Additionally, the increase of systemic insulin resistance in type 2 DM leads to hyperglycemia as well [1]. Hyperglycemia indirectly influences cancer cells through an increase in the levels of insulin/IGF-1 and inflammatory cytokines in circulation. Beyond that, there are reasons to believe that hyperglycemia per se has a direct impact on cancer cell proliferation, apoptosis and metastasis [1,2,3]. High glucose activates various signaling pathways that cooperate to control cancer cell behavior, such as proliferation, migration, invasion and recurrence [11]. Furthermore, epigenetic modulations of oncogenic pathways induced by high glucose result in prolonged activation of cancer cell proliferation [12,13]. However, these direct effects of high glucose in cancer cell behavior are relatively unexplored, and more needs to be learned about which signaling pathways are involved and how they are controlled. Resolving these questions will shed light on the molecular links between DM and cancers. Below, we will discuss the potential mechanisms linking hyperglycemia to cancer progression, with a special focus on tumor cell proliferation, apoptosis, invasion and the epigenetic variations in cancer cells upon hyperglycemic exposure. This will by necessity also require a discussion of the efficacy of DM therapeutics for cancer growth.
Cancer cell proliferation
Enhanced glucose uptake in cancer cells is a well-established hallmark of cancer cells [14]. The enhanced glucose metabolism in cancer cells is referred to as the Warburg effect, which comprises the increase in aerobic glycolysis in cancer cells defined by Warburg [15]. In this respect, hyperglycemia could provide a high glucose fuel source for cancer cells supporting rapid proliferation. Indeed, in vitro studies with cancer cell lines indicate that high concentrations of glucose levels regulate enhanced expression of genes associated with promoting cancer cell proliferation, invasion, and migration [16]. In vivo animal studies are plagued by technical limitations to evaluate the effects of hyperglycemia on cancer cells. This is due to the fact that in order to induce hyperglycemia in these rodent models, streptozotocin is used to destroy pancreatic β-cells. This leads to hyperglycemia, but obviously also prompts the loss of insulin in circulation. Insulin is an intrinsic mitogen affecting tumor growth. In humans, elevated glucose levels in circulation serve as an established predictor of poor survival in cancer patients [17,18,19]. In line with that, high sugar intake is associated with increased cancer cell proliferation [16].
Multiple proteins have been implicated as mediators of hyperglycemia and cancer cell proliferation (Fig. 1). Recent in vitro studies suggest that the expression of glucose transporters, such as the GLUT1 and GLUT3 isoforms, is regulated under hyperglycemic conditions in JAR cells, a choriocarcinoma cell line [20]. Hyperglycemic conditions in vitro (such as 25 mM D-glucose) trigger increased glucose uptake in JAR cells due to a transcriptional increase and enhanced protein levels for GLUT1 and GLUT3 [20]. Growth factors, such as epidermal growth factor (EGF) levels are augmented by high glucose treatment in pancreatic cancer cell lines, such as BxPC-3 and Panc-1, and subsequently activate its receptor, the epidermal growth factor receptor (EGFR), a well-known oncogenic pathway [21]. In addition, the levels of protein kinase C (PKC) and peroxisome proliferator-activated receptors (PPARs) are stimulated under hyperglycemic conditions in MCF-7 human breast cancer cells [22]. Overexpression of PKC-α in MCF-7 induces a more aggressive phenotype [23]. PPAR-α and PPAR-γ are influencing lipid metabolic pathways. High levels of PPAR-α and PPAR-γ can accelerate cell proliferation [24]. High glucose accelerates the cell cycle through regulating the levels of key proteins, such as cyclin-dependent kinase 2, E2F, cyclinA, and cyclinE, resulting in increased proliferation [16]. Furthermore, hyperglycemic conditions augment the levels of glial cell line derived neurotophic factor (GDNF) and its tyrosine kinase receptor gene, the rearranged during transfection (RET) gene, in human pancreatic cancer cells, such as BxPC-3 and MIA PaCa-2 cells [25]. GDNF is a cytokine related to the transforming growth factor-β family, enhancing the survival and differentiation of midbrain dopaminergic neurons [26] as well as promoting pancreatic cancer cell proliferation and invasion mediated through a protein complex of RET/GDNF-family receptor α-1 (GFR α-1) [27]. Taken together, these data strongly implicate hyperglycemia as a contributing factor leading to enhanced cell proliferation.
Cancer cell antiapoptosis
Apoptosis, the process of programmed cell death, is a genetically regulated process that is essential for multicellular organisms. The dysregulation of apoptosis can result in uncontrolled cellular growth [28]. The connection between hyperglycemia and cancer cell apoptosis is unclear; however, there are several possible connections suggested (Fig. 1).
Many tumors are exposed to hypoxia due to limited oxygen supplies during rapid anabolic cell proliferation [29]. In response to hypoxia, hypoxia inducible factor-1α (HIF1α), a key transcriptional regulator of the hypoxic response, is stabilized at the protein level and translocated into nucleus. This leads to the increased expression of genes associated with glucose metabolism, angiogenesis and survival/antiapoptotic processes [30,31]. Under normoxic conditions, HIF1α is degraded by HIF prolyl hydroxylase (PHD) enzymes, and this process is oxygen dependent [31]. Hyperglycemia regulates the stability and function of HIF1α through interfering with the degradation of HIF1α by PHD enzymes [32], which causes increased cancer cell survival and conveys antiapoptotic qualities upon the tumor.
Recent studies also suggest that glucose metabolism in cancer cells protects cytochrome c-mediated apoptosis [33]. Glutathione is one of the main antioxidant mediators of cells, which is reduced by nicotinamide adenine dinucleotide phosphate (NADPH) derived from enhanced glucose metabolism, such as the pentose phosphate pathway [34].
Cancer cell migration and invasiveness
Epidemiological data suggest that metastatic growth is the main cause of deaths in 90% patients carrying solid tumors [35]. Metastatic growth ensues when cancer cells become invasive through an altered phenotype, penetrating into the circulatory system, and taking hold in a distant organ. Epithelial-mesenchymal transition (EMT), a multifaceted process critical for the acquisition of migration, invasiveness and pluripotent stem cell-like phenotype, plays a pivotal role in the metastatic process [36]. Several studies suggest that high glucose induces cancer cell invasiveness and migration through stimulating EMT (Fig. 1). High glucose decreases E-cadherin levels, an epithelial cell marker, and increases the PKC-α pathway, leading to a more invasive phenotype [16]. Recently, Dong et al. [37] suggested that hyperglycemia induces the EMT phenotype and the expression of cancer stem cell markers in basal luminal breast carcinoma, which leads to reduced reactive oxygen species (ROS) generation and increased cell survival.
Hydrogen peroxide has been implicated in the migration and invasive activity of pancreatic cancer cells under hyperglycemic conditions [38]. High glucose levels generate oxidative stress due to ROS. The migration and invasion of pancreatic cancer cell lines, such as BxPC-3 and Panc-1 cells, are all augmented by superoxide dismutase (SOD) which catalyzes the conversion of the superoxide anion to hydrogen peroxide under hyperglycemic conditions [39]. The mRNA expression of urokinase plasminogen activator, one of the mediators involved in cell migration, is also up-regulated under high glucose levels with SOD [40].
Zinc is an essential element for cellular function. An imbalance in zinc homeostasis causes several human diseases [41]. Hyperglycemia is thought to promote migration of breast cancer cells via zinc and its transporters, ZRT/IRT-like protein 6 (ZIP6) and ZRT/IRT-like protein 10 (ZIP10) [42]. Thus, high glucose increases zinc uptake, and the expression of ZIP6 and ZIP10 transporters in breast cancer cells, such as MCF-7. ZIP6 regulates EMT, and ZIP10 is known to be involved in cancer cell migration [43].
Epigenetic regulation in cancer cells
Chronic hyperglycemic conditions may cause epigenetic changes in oncogenic pathways in cancer cells (Fig. 1). A recent study suggested that epigenetic silencing of the critical gluconeogenic enzyme, fructose-1,6-biphosphatase through the EMT-related transcription repressor Snail, increases glycolysis and NADPH production via the pentose phosphate pathway and a reduction in oxidative phosphorylation [37]. These metabolic alterations induced by hyperglycemia contribute to lower ROS generation and increase of β-catenin/TCF4 activation, a key pathway for the acquisition of a cancer stem cell phenotype, leading to better survival [37]. Recent studies show that transient hyperglycemia induces the recruitment of the transcription factor Set7 to the nuclear factor-κB (NF-κB) p65 promoter. The recruitment of Set7 to p65 promoter enhances histone 3 lysine 4 monomethylation within the promoter, resulting in increased NF-κB activation and increased inflammation [44].
Hyperglycemic memory is an epigenetic phenomenon induced by hyperglycemia [12]. After cancer cells are exposed to hyperglycemic conditions, a subset of oncogenic pathways are permanently activated, even after hyperglycemic conditions are normalized to euglycemic conditions [45]. However, the specific molecular mechanism how a cancer cell gets permanently "rewired" and the hyperglycemic memory instilled is still unclear. We suggested that the neuregulin-1 (Nrg1)-HER3 pathway is up-regulated in tumors derived from hyperglycemic patients or rodents. Nrg1 belongs to a family of EGF-like ligands for HER3, itself a member of the EGFR of receptor tyrosine kinase, related to cancer cell proliferation, survival and metastasis [46]. Once activated, these cancer cells originating from hyperglycemic conditions grow faster than control cells even under euglycemic conditions [45].
Therapeutic interventions
Given these strong epidemiological connections seen in patients suffering from DM with a higher risk to develop some types of cancer, these increased risks need to be taken into account and prophylactic screening is warranted. However, an additional question is whether antidiabetic therapeutic approaches also reduce the risk of associated cancers.
There are a variety of antidiabetic interventions, including sulfonylureas, α-glucosidase inhibitors, biguanides, and thiazolidinediones (TZDs) [47]. The major groups of antidiabetic drugs increase the level of circulating insulin, thereby reducing hyperglycemia by various mechanisms. Especially, compounds such as metformin inhibit hepatic gluconeogenesis to reduce the level of circulating glucose and increasing insulin sensitivity through the 5'AMP-activated protein kinase and AKT/mTOR pathway [48,49,50]. Metformin has received widespread attention due to its apparent anticancer effects [48,51]. Metformin inhibits cell proliferation and induces apoptosis in cancer cell lines [52,53,54]. It can also exert anticancer effects via modulation of DICER (also known as endoribonuclease Dicer or helicase with RNase motif) activity, via mir33a up-regulation, and via targeting c-MYC (Myc proto-oncogene protein) [55]. Despite a lot of excitement and attention, clinical data inferring anti-mitogenic effects of antidiabetic drugs and their effects on cancer incidence and mortality remain somewhat controversial. As such, some studies suggest that insulin and insulin glargine can increase cancer incidence [56,57], while other studies conclude that there is no effect [58]. Similarly, TZDs have been reported to exert both tumor growth supporting and inhibitory roles [59], whereas metformin and other biguanides decrease the cancer incidence [60,61] or have no impact [62].
Another drawback of treating cancers in the context of DM is at the level of the memory effects of hyperglycemia and the associated epigenetic alterations in key oncogenic pathways in cancer cells. Thus, merely managing blood glucose levels per se might not be sufficient to obtain a full therapeutic impact. We need to expand our understanding of the key specific target genes and pathways affected by hyperglycemia within tumors, such that these pathways may be targeted in a more directed approach. For instance, the finding that the NRG1/HER3 axis is specifically and disproportionately activated in women diagnosed with breast cancer and found to be hyperglycemic at the time of diagnosis may suggest an effective first line of treatment with neutralizing Her3 antibodies which would not necessarily be the first choice in the context of other types of breast cancer.
Strong epidemiological data is at hand suggesting an increase of both cancer risk and mortality in DM patients. This is especially relevant for cancers of the liver, pancreas, mammary gland, and the endometrium. Studies have mainly focused on the molecular mechanisms related to insulin and chronic inflammation. Hyperglycemia and associated hyperglycemic memory effects and their impact on key cancer cell pathways, such as cell proliferation, apoptosis, migration, and invasion offer new therapeutic avenues. These combined with traditional chemotherapeutic approaches may offer strong synergistic effects towards curbing growth of primary tumors and metastatic lesions. Diabetic patients may profit from these more individualized treatment regimens. Unquestionably, with the ever increasing prevalence of diabetes in the population, affecting younger individuals more than ever before, the interface of metabolic dysregulation and cancer moves increasingly to the forefront and represents as much of a challenge as it is an opportunity for novel therapeutic approaches.
This work was supported by the 2014 research fund of Ulsan National Institute of Science and Technology (UNIST; 1.130088.01; J. Park).

No potential conflict of interest relevant to this article was reported.

  • 1. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocr Relat Cancer 2009;16:1103-1123. ArticlePubMed
  • 2. Johnson JA, Carstensen B, Witte D, Bowker SL, Lipscombe L, Renehan AG. Diabetes and Cancer Research Consortium. Diabetes and cancer (1): evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia 2012;55:1607-1618. ArticlePubMedPDF
  • 3. Suh S, Kim KW. Diabetes and cancer: is diabetes causally related to cancer? Diabetes Metab J 2011;35:193-198. ArticlePubMedPMC
  • 4. Bonovas S, Filioussi K, Tsantes A. Diabetes mellitus and risk of prostate cancer: a meta-analysis. Diabetologia 2004;47:1071-1078. ArticlePubMedPDF
  • 5. Onitilo AA, Engel JM, Glurich I, Stankowski RV, Williams GM, Doi SA. Diabetes and cancer I: risk, survival, and implications for screening. Cancer Causes Control 2012;23:967-981. ArticlePubMedPMCPDF
  • 6. Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr 2001;131(11 Suppl):3109S-3120S. ArticlePubMed
  • 7. Bruning PF, Bonfrer JM, van Noord PA, Hart AA, de Jong-Bakker M, Nooijen WJ. Insulin resistance and breast-cancer risk. Int J Cancer 1992;52:511-516. ArticlePubMed
  • 8. Reaven GM. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med 2005;47:201-210. PubMed
  • 9. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-867. ArticlePubMedPMCPDF
  • 10. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1-40. ArticlePubMed
  • 11. Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, Wu E, Ma Q. Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int 2014;2014:461917ArticlePubMedPMCPDF
  • 12. Siebel AL, Fernandez AZ, El-Osta A. Glycemic memory associated epigenetic changes. Biochem Pharmacol 2010;80:1853-1859. ArticlePubMed
  • 13. Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol 2014;51:155-158. ArticlePubMed
  • 14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-674. ArticlePubMed
  • 15. Warburg O. On the origin of cancer cells. Science 1956;123:309-314. ArticlePubMed
  • 16. Masur K, Vetter C, Hinz A, Tomas N, Henrich H, Niggemann B, Zanker KS. Diabetogenic glucose and insulin concentrations modulate transcriptome and protein levels involved in tumour cell migration, adhesion and proliferation. Br J Cancer 2011;104:345-352. ArticlePubMedPDF
  • 17. Krone CA, Ely JT. Controlling hyperglycemia as an adjunct to cancer therapy. Integr Cancer Ther 2005;4:25-31. ArticlePubMedPDF
  • 18. Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol 2009;27:1082-1086. ArticlePubMedPMC
  • 19. Hosokawa T, Kurosaki M, Tsuchiya K, Matsuda S, Muraoka M, Suzuki Y, Tamaki N, Yasui Y, Nakata T, Nishimura T, Suzuki S, Ueda K, Nakanishi H, Itakura J, Takahashi Y, Izumi N. Hyperglycemia is a significant prognostic factor of hepatocellular carcinoma after curative therapy. World J Gastroenterol 2013;19:249-257. ArticlePubMedPMC
  • 20. Hahn T, Barth S, Hofmann W, Reich O, Lang I, Desoye G. Hyperglycemia regulates the glucose-transport system of clonal choriocarcinoma cells in vitro. A potential molecular mechanism contributing to the adjunct effect of glucose in tumor therapy. Int J Cancer 1998;78:353-360. ArticlePubMed
  • 21. Han L, Ma Q, Li J, Liu H, Li W, Ma G, Xu Q, Zhou S, Wu E. High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS One 2011;6:e27074ArticlePubMedPMC
  • 22. Okumura M, Yamamoto M, Sakuma H, Kojima T, Maruyama T, Jamali M, Cooper DR, Yasuda K. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochim Biophys Acta 2002;1592:107-116. PubMed
  • 23. Ways DK, Kukoly CA, deVente J, Hooker JL, Bryant WO, Posekany KJ, Fletcher DJ, Cook PP, Parker PJ. MCF-7 breast cancer cells transfected with protein kinase C-alpha exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. J Clin Invest 1995;95:1906-1915. ArticlePubMedPMC
  • 24. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S, Spiegelman BM. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1998;1:465-470. PubMed
  • 25. Liu H, Ma Q, Li J. High glucose promotes cell proliferation and enhances GDNF and RET expression in pancreatic cancer cells. Mol Cell Biochem 2011;347:95-101. ArticlePubMedPDF
  • 26. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993;260:1130-1132. ArticlePubMed
  • 27. Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P, Giehl K. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res 2004;64:5291-5300. ArticlePubMedPDF
  • 28. Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009;9:501-507. ArticlePubMedPDF
  • 29. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;4:891-899. ArticlePubMedPDF
  • 30. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999;15:551-578. ArticlePubMed
  • 31. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 2004;36:1-12. ArticlePubMedPDF
  • 32. Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 2004;53:3226-3232. PubMed
  • 33. Vaughn AE, Deshmukh M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 2008;10:1477-1483. ArticlePubMedPMCPDF
  • 34. Kaplowitz N, Aw TY, Ookhtens M. The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 1985;25:715-744. ArticlePubMed
  • 35. Walters S, Maringe C, Coleman MP, Peake MD, Butler J, Young N, Bergstrom S, Hanna L, Jakobsen E, Kolbeck K, Sundstrom S, Engholm G, Gavin A, Gjerstorff ML, Hatcher J, Johannesen TB, Linklater KM, McGahan CE, Steward J, Tracey E, Turner D, Richards MA, Rachet B. ICBP Module 1 Working Group. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: a population-based study, 2004-2007. Thorax 2013;68:551-564. ArticlePubMed
  • 36. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010;101:293-299. ArticlePubMed
  • 37. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2013;23:316-331. ArticlePubMedPMC
  • 38. Li W, Ma Q, Li J, Guo K, Liu H, Han L, Ma G. Hyperglycemia enhances the invasive and migratory activity of pancreatic cancer cells via hydrogen peroxide. Oncol Rep 2011;25:1279-1287. PubMed
  • 39. Storz P. Mitochondrial ROS: radical detoxification, mediated by protein kinase D. Trends Cell Biol 2007;17:13-18. ArticlePubMed
  • 40. Schmitt M, Harbeck N, Thomssen C, Wilhelm O, Magdolen V, Reuning U, Ulm K, Hofler H, Janicke F, Graeff H. Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost 1997;78:285-296. ArticlePubMed
  • 41. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem 2011;16:1123-1134. ArticlePubMedPMC
  • 42. Takatani-Nakase T, Matsui C, Maeda S, Kawahara S, Takahashi K. High glucose level promotes migration behavior of breast cancer cells through zinc and its transporters. PLoS One 2014;9:e90136ArticlePubMedPMC
  • 43. Lopez V, Kelleher SL. Zip6-attenuation promotes epithelial-to-mesenchymal transition in ductal breast tumor (T47D) cells. Exp Cell Res 2010;316:366-375. ArticlePubMed
  • 44. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009;58:1229-1236. ArticlePubMedPMCPDF
  • 45. Park J, Sarode VR, Euhus D, Kittler R, Scherer PE. Neuregulin 1-HER axis as a key mediator of hyperglycemic memory effects in breast cancer. Proc Natl Acad Sci U S A 2012;109:21058-21063. ArticlePubMedPMC
  • 46. Stove C, Bracke M. Roles for neuregulins in human cancer. Clin Exp Metastasis 2004;21:665-684. ArticlePubMedPDF
  • 47. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005;65:385-411. ArticlePubMed
  • 48. Pernicova I, Korbonits M. Metformin: mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014;10:143-156. ArticlePubMedPDF
  • 49. Li D. Metformin as an antitumor agent in cancer prevention and treatment. J Diabetes 2011;3:320-327. ArticlePubMed
  • 50. Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci 2011;1243:54-68. ArticlePubMed
  • 51. Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, La Vecchia C, Mancia G, Corrao G. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 2012;17:813-822. ArticlePubMedPMCPDF
  • 52. Zordoky BN, Bark D, Soltys CL, Sung MM, Dyck JR. The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim Biophys Acta 2014;1840:1943-1957. ArticlePubMed
  • 53. Takahashi A, Kimura F, Yamanaka A, Takebayashi A, Kita N, Takahashi K, Murakami T. Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell Int 2014;14:53ArticlePubMedPMC
  • 54. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009;69:7507-7511. ArticlePubMedPMCPDF
  • 55. Blandino G, Valerio M, Cioce M, Mori F, Casadei L, Pulito C, Sacconi A, Biagioni F, Cortese G, Galanti S, Manetti C, Citro G, Muti P, Strano S. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 2012;3:865ArticlePubMedPDF
  • 56. Johnson JA, Pollak M. Insulin, glucose and the increased risk of cancer in patients with type 2 diabetes. Diabetologia 2010;53:2086-2088. ArticlePubMedPDF
  • 57. Suissa S, Azoulay L, Dell'Aniello S, Evans M, Vora J, Pollak M. Long-term effects of insulin glargine on the risk of breast cancer. Diabetologia 2011;54:2254-2262. ArticlePubMedPDF
  • 58. Fagot JP, Blotiere PO, Ricordeau P, Weill A, Alla F, Allemand H. Does insulin glargine increase the risk of cancer compared with other basal insulins?: a French nationwide cohort study based on national administrative databases. Diabetes Care 2013;36:294-301. PubMedPMC
  • 59. Murphy GJ, Holder JC. PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 2000;21:469-474. PubMed
  • 60. Oliveria SA, Koro CE, Yood MU, Sowell M. Cancer incidence among patients treated with antidiabetic pharmacotherapy. Diabetes Metab Syndr 2008;2:47-57.Article
  • 61. Bodmer M, Meier C, Krahenbuhl S, Jick SS, Meier CR. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 2010;33:1304-1308. ArticlePubMedPMCPDF
  • 62. Franciosi M, Lucisano G, Lapice E, Strippoli GF, Pellegrini F, Nicolucci A. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One 2013;8:e71583ArticlePubMedPMC
Fig. 1
Impact of hyperglycemia on tumor progression. A hyperglycemic environment contributes to tumor progression through multiple pathways. Cancer cell proliferation is promoted by the up-regulation of glucose transporters (GLUT1 and GLUT3), epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR), and other growth promoting signals such as protein kinase C-α (PKC-α), peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, glial cell line-derived neurotophic factor (GDNF), and its receptor, rearranged during transfection (RET) receptor. The levels of hypoxia inducible factor-1α (HIF1α), prolyl hydroxylase (PHD) enzyme and cytochrome c regulated by hyperglycemia are associated with antiapoptotic activity of cancer cells. Cancer cell migration and invasiveness is acquired by the up-regulation of superoxide dismutase (SOD), urokinase plasminogen activator (uPA), ZRT/IRT-like protein 6 (ZIP6), and ZRT/IRT-like protein 10 (ZIP10). Moreover, hyperglycemic memory, i.e., epigenetic regulation of cancer cells by hyperglylcemia, increases the expression of nuclear factor-κB (NF-κB) and neuregulin-1 (Nrg1), both are well-established oncogenic signals.

Figure & Data



    Citations to this article as recorded by  
    • Enhanced degradation of epidermal growth factor receptor by metformin
      Mayuka Yamagata, Sen Higashi, Noboru Yaida, Akane Ichihara, Manabu Habu, Masaaki Sasaguri, Kazuhiro Tominaga, Hiroshi Takeuchi
      Oral Science International.2024; 21(1): 59.     CrossRef
    • Development and Validation of a Fluorogenic Probe for Lysosomal Zinc Release
      Adarash Kumar Shukla, Ashutosh Mahale, Savita Choudhary, Pravesh Sharma, Onkar Prakash Kulkarni, Anupam Bhattacharya
      ChemBioChem.2024;[Epub]     CrossRef
    • Type 2 diabetes, glycaemic traits and upper gastrointestinal cancer risk: a prospective cohort study
      Luyao Cao, Tianpei Wang, Huizhang Li, Fadoua El Hafa, Xia Zhu, Yuhui Yu, Caiwang Yan, Lingbin Du, Meng Zhu, Guangfu Jin
      Journal of Epidemiology and Community Health.2024; 78(3): 145.     CrossRef
    • Extrahepatic malignancies in metabolic dysfunction‐associated fatty liver disease: A nationwide cohort study
      Min Kyung Park, Moon Haeng Hur, Hye‐Sung Moon, Hyunjae Shin, Sung Won Chung, Sungho Won, Yun Bin Lee, Eun Ju Cho, Jeong‐Hoon Lee, Su Jong Yu, Jung‐Hwan Yoon, Yoon Jun Kim
      Liver International.2024; 44(3): 799.     CrossRef
    • Effects of the Mediterranean Diet on metabolic indices and quality of life in cancer patients: A systematic review and meta-analysis of randomized controlled trials
      Shuai Lu, Xibo Sun, Weihao Zhang, Xiangqi Li, Zhongbao Zhou, Ruixue Xiao, Qingchen Lv, Huazhen Tang, Bing Wang, Jinxiu Qu, Rui Cao, Jia He, Shiwan Wang, Penghui Yang, Zhenpeng Yang, Benqiang Rao
      Journal of Functional Foods.2024; 114: 106074.     CrossRef
    • M1-derived extracellular vesicles polarize recipient macrophages into M2-like macrophages and alter skeletal muscle homeostasis in a hyper-glucose environment
      Stefano Tacconi, Francesco Vari, Carolina Sbarigia, Diana Vardanyan, Serena Longo, Francesco Mura, Federica Angilè, Audrey Jalabert, Ferninand Blangero, Assia Eljaafari, Laurence Canaple, Daniele Vergara, Francesco Paolo Fanizzi, Marco Rossi, Claire Crola
      Cell Communication and Signaling.2024;[Epub]     CrossRef
    • The complex landscape of intracellular signalling in protein modification under hyperglycaemic stress leading to metabolic disorders
      Hamda Khan, Afreen Khanam, Adnan Ahmad Khan, Rizwan Ahmad, Arbab Husain, Safia Habib, Saheem Ahmad, Moinuddin
      The Protein Journal.2024; 43(3): 425.     CrossRef
    • Nuclear translocation of metabolic enzyme PKM2 participates in high glucose-promoted HCC metastasis by strengthening immunosuppressive environment
      Jiali Qian, Chuxin Huang, Mimi Wang, Ying Liu, Yingying Zhao, Miao Li, Xi Zhang, Xiangyu Gao, Yawen Zhang, Yi Wang, Jinya Huang, Jiajun Li, Qiwen Zhou, Rui Liu, Xuanchun Wang, Jiefeng Cui, Yehong Yang
      Redox Biology.2024; 71: 103103.     CrossRef
    • Mitochondrial ALDH2 improves ß‐cell survival and function against doxorubicin‐induced apoptosis by targeting CK2 signaling
      Udayakumar Karunakaran, Eun Yeong Ha, Suma Elumalai, Kyu Chang Won, Jun Sung Moon
      Journal of Diabetes Investigation.2024; 15(6): 684.     CrossRef
    • Macrophages, IL-10, and nitric oxide increase, induced by hyperglycemic conditions, impact the development of murine melanoma B16F10-Nex2
      Tarciso A. Sellani, Samanta L. Tomaz, Jéssica M. Gonçalves, Adriana Lima, Carolina C. de Amat Herbozo, Gabrielli N. Silva, Mônica Gambero, Ieda M. Longo-Maugéri, Karin A. Simon, Hugo P. Monteiro, Elaine G. Rodrigues
      Nitric Oxide.2024; 148: 1.     CrossRef
    • Bidirectional relationship between pancreatic cancer and diabetes mellitus: a comprehensive literature review
      Shady Sapoor, Mahmoud Nageh, Noran Magdy Shalma, Rana Sharaf, Nooran Haroun, Esraa Salama, Tungki Pratama Umar, Sadish Sharma, Reem Sayad
      Annals of Medicine & Surgery.2024; 86(6): 3522.     CrossRef
    • Diabetes Risk Reduction Diet (DRRD) and Breast Cancer Risk: A Review
      Motahareh Hasani, Haniyeh Ghasemi, Adeleh Khodabakhshi
      Nutrition and Cancer.2024; : 1.     CrossRef
    • Tobacco-induced hyperglycemia promotes lung cancer progression via cancer cell-macrophage interaction through paracrine IGF2/IR/NPM1-driven PD-L1 expression
      Hyun-Ji Jang, Hye-Young Min, Yun Pyo Kang, Hye-Jin Boo, Jisung Kim, Jee Hwan Ahn, Seung Ho Oh, Jin Hwa Jung, Choon-Sik Park, Jong-Sook Park, Seog-Young Kim, Ho-Young Lee
      Nature Communications.2024;[Epub]     CrossRef
    • Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies
      Yasaman Naeimzadeh, Amir Tajbakhsh, Mahnaz Nemati, Jafar Fallahi
      European Journal of Pharmacology.2024; 978: 176803.     CrossRef
    • Designing of potent anti-diabetic molecules by targeting SIK2 using computational approaches
      Prajisha Jayaprakash, Jayashree Biswal, Raghu Rangaswamy, Jeyaraman Jeyakanthan
      Molecular Diversity.2023; 27(3): 1101.     CrossRef
    • Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects
      Mariam Farrag, Djedjiga Ait Eldjoudi, María González-Rodríguez, Alfonso Cordero-Barreal, Clara Ruiz-Fernández, Maurizio Capuozzo, Miguel Angel González-Gay, Antonio Mera, Francisca Lago, Ahmed Soffar, Amina Essawy, Jesus Pino, Yousof Farrag, Oreste Gualil
      Frontiers in Endocrinology.2023;[Epub]     CrossRef
    • HIPK2 as a Novel Regulator of Fibrosis
      Alessia Garufi, Giuseppa Pistritto, Gabriella D’Orazi
      Cancers.2023; 15(4): 1059.     CrossRef
    • Cancer—A Pragmatic Switch to Combat Metabolic Syndrome?
      John Claras
      Oncology Reviews.2023;[Epub]     CrossRef
    • Could Vaspin Be a Potential Diagnostic Marker in Endometrial Cancer?
      Dominika Pietrzyk, Piotr Tkacz, Mateusz Kozłowski, Sebastian Kwiatkowski, Małgorzata Rychlicka, Ewa Pius-Sadowska, Bogusław Machaliński, Aneta Cymbaluk-Płoska
      International Journal of Environmental Research and Public Health.2023; 20(6): 4999.     CrossRef
    • Diabetes and Cancer
      Jae Won Hong
      The Journal of Korean Diabetes.2023; 24(1): 12.     CrossRef
    • The Sweet Side of HIPK2
      Alessia Garufi, Valerio D’Orazi, Giuseppa Pistritto, Mara Cirone, Gabriella D’Orazi
      Cancers.2023; 15(10): 2678.     CrossRef
    • Glucose-induced CRL4COP1-p53 axis amplifies glycometabolism to drive tumorigenesis
      Yang Su, Yifan Luo, Peitao Zhang, Hong Lin, Weijie Pu, Hongyun Zhang, Huifang Wang, Yi Hao, Yihang Xiao, Xiaozhe Zhang, Xiayun Wei, Siyue Nie, Keren Zhang, Qiuyu Fu, Hao Chen, Niu Huang, Yan Ren, Mingxuan Wu, Billy Kwok Chong Chow, Xing Chen, Wenfei Jin,
      Molecular Cell.2023; 83(13): 2316.     CrossRef
    • SGLT2 Inhibitors as Potential Anticancer Agents
      Debasish Basak, David Gamez, Subrata Deb
      Biomedicines.2023; 11(7): 1867.     CrossRef
    • Diabetes mellitus and cancer
      Jae Won Hong
      Cardiovascular Prevention and Pharmacotherapy.2023; 5(3): 69.     CrossRef
    • Risk Factors of Renal Cell Carcinoma
      云治 秦
      Medical Diagnosis.2023; 13(03): 335.     CrossRef
    • The Role of Meteorin-Like Peptide and Asprosin in Colon Carcinoma
      Elif Onat, Nevin Kocaman, Hilal Balta
      Cureus.2023;[Epub]     CrossRef
    • Diabetes-associated breast cancer is molecularly distinct and shows a DNA damage repair deficiency
      Gatikrushna Panigrahi, Julián Candia, Tiffany H. Dorsey, Wei Tang, Yuuki Ohara, Jung S. Byun, Tsion Zewdu Minas, Amy Zhang, Anuoluwapo Ajao, Ashley Cellini, Harris G. Yfantis, Amy L. Flis, Dean Mann, Olga Ioffe, Xin W. Wang, Huaitian Liu, Christopher A. L
      JCI Insight.2023;[Epub]     CrossRef
    • The classification of obesity based on metabolic status redefines the readmission of non-Hodgkin’s lymphoma—an observational study
      Hang Dong, Honglin Guo, Jing Du, Yiping Cheng, Dawei Wang, Junming Han, Zinuo Yuan, Zhenyu Yao, Ran An, Xiaoqin Wu, Kyle L. Poulsen, Zhixiang Wang, Shanshan Shao, Xiude Fan, Zhen Wang, Jiajun Zhao
      Cancer & Metabolism.2023;[Epub]     CrossRef
    • Dose‐dependent effects of aerobic exercise on clinically relevant biomarkers among healthy women at high genetic risk for breast cancer: A secondary analysis of a randomized controlled study
      Christopher J. Ehret, Shouhao Zhou, Julia C. Tchou, Kathryn H. Schmitz, Kathleen M. Sturgeon
      Cancer Reports.2022;[Epub]     CrossRef
    • Do diabetic complications influence cancer-related events in people with type 2 diabetes? A cohort approach
      Evelyne Liuu, Pierre-Jean Saulnier, Elise Gand, Gautier Defossez, Amélie Jamet, Stéphanie Ragot, Marc Paccalin, Samy Hadjadj
      Diabetes & Metabolism.2022; 48(2): 101289.     CrossRef
    • Unraveling the Role of STK11/LKB1 in Non-small Cell Lung Cancer
      Vikram Sumbly, Ian Landry
      Cureus.2022;[Epub]     CrossRef
    • Impact of Diabetes Mellitus and Its Comorbidities on Elderly Patients Hospitalized in Internal Medicine Wards: Data from the RePoSi Registry
      Christiano Argano, Giuseppe Natoli, Salvatore Mularo, Alessandro Nobili, Marika Lo Monaco, Pier Mannuccio Mannucci, Francesco Perticone, Antonello Pietrangelo, Salvatore Corrao
      Healthcare.2022; 10(1): 86.     CrossRef
    • Type 2 Diabetes and Risk of Early-Onset Colorectal Cancer
      Zitong Li, Hanyu Chen, Cassandra D.L. Fritz, Xiaobin Zheng, Xiaoyu Zong, Katelin B. Nickel, Andrew Tipping, Long H. Nguyen, Andrew T. Chan, Edward L. Giovannucci, Graham A. Colditz, Margaret A. Olsen, Peter T. Campbell, Nicholas O. Davidson, Ryan C. Field
      Gastro Hep Advances.2022; 1(2): 186.     CrossRef
    • Metformin Downregulates the Expression of Epidermal Growth Factor Receptor Independent of Lowering Blood Glucose in Oral Squamous Cell Carcinoma
      Wei-Ming Wang, Si-Si Yang, Shu-Hui Shao, Huan-Quan Nie, Jing Zhang, Tong Su
      Frontiers in Endocrinology.2022;[Epub]     CrossRef
    • Exploring the Impact of the Obesity Paradox on Lung Cancer and Other Malignancies
      Lindsay Joyce Nitsche, Sarbajit Mukherjee, Kareena Cheruvu, Cathleen Krabak, Rohit Rachala, Kalyan Ratnakaram, Priyanka Sharma, Maddy Singh, Sai Yendamuri
      Cancers.2022; 14(6): 1440.     CrossRef
    • Modern Lifestyle, Stress and Metabolism: Possible Risk Factors for Oral Carcinogenesis in the Young Generation
      Monal Yuwanati, Sachin C Sarode, Amol Gadbail, Shailesh Gondivkar, Gargi Sarode
      Future Oncology.2022; 18(15): 1801.     CrossRef
    • Effects of In Vitro Digestion on Anti-α-Amylase and Cytotoxic Potentials of Sargassum spp.
      Sovannary Un, Nguyen Van Quan, La Hoang Anh, Vu Quang Lam, Akiyoshi Takami, Tran Dang Khanh, Tran Dang Xuan
      Molecules.2022; 27(7): 2307.     CrossRef
    • Consumption of “Diabetes Risk Reduction Diet” and Odds of Breast Cancer Among Women in a Middle Eastern Country
      Sara Ebrahimi Mousavi, Amir Bagheri, Sanaz Benisi-Kohansal, Leila Azadbakht, Ahmad Esmaillzadeh
      Frontiers in Nutrition.2022;[Epub]     CrossRef
    • Fasting Insulin and Risk of Overall and 14 Site-Specific Cancers: Evidence From Genetic Data
      Han Zhang, Doudou Li, Xiaozhuan Liu, Zhongxiao Wan, Zengli Yu, Yuming Wang, Xue Li
      Frontiers in Oncology.2022;[Epub]     CrossRef
    • A Nutritional Metabolism Related Prognostic Scoring System for Patients With Newly Diagnosed Osteosarcoma
      Longqing Li, Zhuangzhuang Li, Xuanhong He, Yang Wang, Minxun Lu, Taojun Gong, Qing Chang, Jingqi Lin, Yi Luo, Li Min, Yong Zhou, Chongqi Tu
      Frontiers in Nutrition.2022;[Epub]     CrossRef
    • Review of Mendelian Randomization Studies on Endometrial Cancer
      Jian-Zeng Guo, Qi-Jun Wu, Fang-Hua Liu, Chang Gao, Ting-Ting Gong, Gang Li
      Frontiers in Endocrinology.2022;[Epub]     CrossRef
      Mehmet Zeki AVCI, Sevda ŞAHİN, Betülay KILIÇ, Hatice SUTCU CICEK
      İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi.2022; 10(3): 849.     CrossRef
    • Association of Physical Activity and Sedentary Behavior With the Risk of Colorectal Cancer
      Sanghyun An, Sungjin Park
      Journal of Korean Medical Science.2022;[Epub]     CrossRef
    • Sleep Disruption and Cancer: Chicken or the Egg?
      Adrian Berisha, Kyle Shutkind, Jeremy C. Borniger
      Frontiers in Neuroscience.2022;[Epub]     CrossRef
    • Role of anti-angiogenic factors in the pathogenesis of breast cancer: A review of therapeutic potential
      Liwei Ruan, Songou Zhang, Xiaozhen Chen, Wenqing Liang, Qiong Xie
      Pathology - Research and Practice.2022; 236: 153956.     CrossRef
    • Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth
      Minghui Cao, Roi Isaac, Wei Yan, Xianhui Ruan, Li Jiang, Yuhao Wan, Jessica Wang, Emily Wang, Christine Caron, Steven Neben, Denis Drygin, Donald P. Pizzo, Xiwei Wu, Xuxiang Liu, Andrew R. Chin, Miranda Y. Fong, Ziting Gao, Kaizhu Guo, Oluwole Fadare, Ric
      Nature Cell Biology.2022; 24(6): 954.     CrossRef
    • Association between haemoglobin A1c and all-cause and cause-specific mortality in middle-aged and older Koreans: a prospective cohort study
      Bo Mi Song, Jung Hyun Lee, Hae Dong Woo, Mi Jin Cho, Sung Soo Kim
      Nutrition & Metabolism.2022;[Epub]     CrossRef
    • Antidiabetic and antiradical effects of Garcinia kola seeds in dexamethasone-induced hyperglycemic rats
      BarnabéLucien Nkono Ya Nkono, Ablassé Rouamba, McJesus Kinyok, JeanGuy Stéphane, BalthazarTchouanka Tcheudi, BenjaminArnaud Tigui, PaulD Djomeni Dzeufiet, SélestinDongmo Sokeng, Pierre Kamtchouing
      International Journal of Applied and Basic Medical Research.2022; 12(3): 203.     CrossRef
    • The “Diabetes Comorbidome”: A Different Way for Health Professionals to Approach the Comorbidity Burden of Diabetes
      Salvatore Corrao, Giuseppe Natoli, Alessandro Nobili, Pier Mannucci, Francesco Perticone, Vincenzo Arcoraci, Christiano Argano
      Healthcare.2022; 10(8): 1459.     CrossRef
    • New insights into the prognosis of intraocular malignancy: Interventions for association mechanisms between cancer and diabetes
      Lingwen Gu, Guofeng Ma, Cui Li, Jing Lin, Guiqiu Zhao
      Frontiers in Oncology.2022;[Epub]     CrossRef
    • Glucose deprivation reduces proliferation and motility, and enhances the anti-proliferative effects of paclitaxel and doxorubicin in breast cell lines in vitro
      Maitham A. Khajah, Sarah Khushaish, Yunus A. Luqmani, Yi-Hsien Hsieh
      PLOS ONE.2022; 17(8): e0272449.     CrossRef
    • Chronic hyperglycemia based on diabetes is independently associated with decreased survival in patients with advanced cancer treated with immune checkpoint inhibitors
      Emre Yekedüz, Elif Berna Köksoy, Sati Coşkun Yazgan, Göktürk Karataş, Filiz Çay Şenler, Güngör Utkan, Hakan Akbulut, Ahmet Demirkazik, Yüksel Ürün
      Anti-Cancer Drugs.2022; 33(10): 1145.     CrossRef
    • HIF-1α Expression Increases Preoperative Concurrent Chemoradiotherapy Resistance in Hyperglycemic Rectal Cancer
      Yi-Jung Huang, Yi-Ting Chen, Chun-Ming Huang, Shih-Hsun Kuo, Yan-You Liao, Wun-Ya Jhang, Shuo-Hung Wang, Chien-Chih Ke, Yu-Hsiang Huang, Chiu-Min Cheng, Ming-Yii Huang, Chih-Hung Chuang
      Cancers.2022; 14(16): 4053.     CrossRef
    • Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection
      Sananda Dey, Nensina Murmu, Tanushree Mondal, Ishita Saha, Soumendranath Chatterjee, Rahul Manna, Subhash Haldar, Sandeep K. Dash, Tapasree Roy Sarkar, Biplab Giri
      Biomedicine & Pharmacotherapy.2022; 156: 113801.     CrossRef
    • Evaluation of Tissue Expression of Vaspin and Serum Vaspin Concentration as a Prognostic and Risk Factor in Endometrial Cancer
      Mateusz Kozłowski, Dominika Pietrzyk, Małgorzata Rychlicka, Katarzyna Piotrowska, Katarzyna Nowak, Sebastian Kwiatkowski, Aneta Cymbaluk-Płoska
      Cells.2022; 11(20): 3196.     CrossRef
    • Exploring the role of neutrophil-to-lymphocyte ratio and blood chemistry in head and neck adenoid cystic carcinomas treated with carbon ion radiotherapy
      Amelia Barcellini, Giulia Fontana, Daria Maria Filippini, Sara Ronchi, Maria Bonora, Barbara Vischioni, Rossana Ingargiola, Anna Maria Camarda, Pierre Loap, Nadia Facchinetti, Lisa Licitra, Guido Baroni, Ester Orlandi
      Radiotherapy and Oncology.2022; 177: 143.     CrossRef
    • Diabetic hyperglycemia promotes primary tumor progression through glycation-induced tumor extracellular matrix stiffening
      Wenjun Wang, Lauren A. Hapach, Lauren Griggs, Kyra Smart, Yusheng Wu, Paul V. Taufalele, Matthew M. Rowe, Katherine M. Young, Madison E. Bates, Andrew C. Johnson, Nicholas J. Ferrell, Ambra Pozzi, Cynthia A. Reinhart-King
      Science Advances.2022;[Epub]     CrossRef
    • The Relationship between Type 2 Diabetes Mellitus with the Occurrence and Progression of Prostate Cancer
      树森 贾
      Advances in Clinical Medicine.2022; 12(11): 10748.     CrossRef
    • Palliative urinary diversion in patients with malignant ureteric obstruction due to gynaecological cancer
      Tamar Perri, Elad Meller, Gilad Ben-Baruch, Yael Inbar, Sara Apter, Lee Heyman, Zohar Dotan, Jacob Korach
      BMJ Supportive & Palliative Care.2022; 12(e6): e855.     CrossRef
    • Onkodiabetológia I.
      Róbert János Bánhegyi, Andrea Gazdag, Beatrix Rácz, Szilvia Beke, Norbert Fülöp
      Orvosi Hetilap.2022; 163(39): 1535.     CrossRef
    • AGE-RAGE synergy influences programmed cell death signaling to promote cancer
      Bhargav N. Waghela, Foram U. Vaidya, Kishu Ranjan, Abu Sufiyan Chhipa, Budhi Sagar Tiwari, Chandramani Pathak
      Molecular and Cellular Biochemistry.2021; 476(2): 585.     CrossRef
    • Diabetes mellitus and oral cancer/oral potentially malignant disorders: A systematic review and meta‐analysis
      Pablo Ramos‐Garcia, Maria del Mar Roca‐Rodriguez, Manuel Aguilar‐Diosdado, Miguel Angel Gonzalez‐Moles
      Oral Diseases.2021; 27(3): 404.     CrossRef
    • High pre-operative fasting blood glucose levels predict a poor prognosis in patients with pancreatic neuroendocrine tumour
      Yitao Gong, Zhiyao Fan, Pin Zhang, Yunzhen Qian, Qiuyi Huang, Shengming Deng, Guopei Luo, He Cheng, Kaizhou Jin, Quanxing Ni, Xianjun Yu, Chen Liu
      Endocrine.2021; 71(2): 494.     CrossRef
    • Thrombospondin‐4 mediates hyperglycemia‐ and TGF‐beta‐induced inflammation in breast cancer
      Santoshi Muppala, Roy Xiao, Jasmine Gajeton, Irene Krukovets, Dmitriy Verbovetskiy, Olga Stenina‐Adognravi
      International Journal of Cancer.2021; 148(8): 2010.     CrossRef
    • The predictive power of CD3+ T cell infiltration of oral squamous cell tumors is limited to non-diabetic patients
      Gerrit Spanier, Ines Ugele, Felix Nieberle, Luisa Symeou, Sandra Schmidhofer, Almut Brand, Johannes Meier, Steffen Spoerl, Rosemarie Krupar, Petra Rümmele, Peter Siska, Kathrin Renner, Katrin Peter, Michael Gerken, Philipp Beckhove, Torsten E. Reichert, M
      Cancer Letters.2021; 499: 209.     CrossRef
    • Contribution of RAGE axis activation to the association between metabolic syndrome and cancer
      Ma. Eugenia Garay-Sevilla, Armando Gomez-Ojeda, Ileana González, Claudia Luévano-Contreras, Armando Rojas
      Molecular and Cellular Biochemistry.2021; 476(3): 1555.     CrossRef
    • PKC Regulates YAP Expression through Alternative Splicing of YAP 3′UTR Pre-mRNA by hnRNP F
      Wing-Keung Chu, Li-Man Hung, Chun-Wei Hou, Jan-Kan Chen
      International Journal of Molecular Sciences.2021; 22(2): 694.     CrossRef
    • The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers
      Narasimha M. Beeraka, Venugopal R. Bovilla, Shalini H. Doreswamy, Sujatha Puttalingaiah, Asha Srinivasan, SubbaRao V. Madhunapantula
      Cancers.2021; 13(2): 281.     CrossRef
    • Body Habitus Across the Lifespan and Risk of Pituitary Adenoma
      David J Cote, Timothy R Smith, Ursula B Kaiser, Edward R Laws, Meir J Stampfer
      The Journal of Clinical Endocrinology & Metabolism.2021; 106(4): 1591.     CrossRef
    • Dairy Consumption and Incidence of Breast Cancer in the ‘Seguimiento Universidad de Navarra’ (SUN) Project
      Inmaculada Aguilera-Buenosvinos, Cesar Ignacio Fernandez-Lazaro, Andrea Romanos-Nanclares, Alfredo Gea, Rodrigo Sánchez-Bayona, Jose M. Martín-Moreno, Miguel Ángel Martínez-González, Estefanía Toledo
      Nutrients.2021; 13(2): 687.     CrossRef
    • Hyperglycemia-Induced miR-467 Drives Tumor Inflammation and Growth in Breast Cancer
      Jasmine Gajeton, Irene Krukovets, Santoshi Muppala, Dmitriy Verbovetskiy, Jessica Zhang, Olga Stenina-Adognravi
      Cancers.2021; 13(6): 1346.     CrossRef
    • Prevalent diabetes and risk of total, colorectal, prostate and breast cancers in an ageing population: meta-analysis of individual participant data from cohorts of the CHANCES consortium
      Amina Amadou, Heinz Freisling, Mazda Jenab, Konstantinos K. Tsilidis, Antonia Trichopoulou, Paolo Boffetta, Bethany Van Guelpen, Olatz Mokoroa, Tom Wilsgaard, Frank Kee, Ben Schöttker, José M. Ordóñez-Mena, Satu Männistö, Stefan Söderberg, Roel C. H. Verm
      British Journal of Cancer.2021; 124(11): 1882.     CrossRef
    • Preexisting Type 2 Diabetes and Survival among Patients with Colorectal Cancer
      Chen Yuan, Xuehong Zhang, Ana Babic, Vicente Morales-Oyarvide, Yin Zhang, Stephanie A. Smith-Warner, Kana Wu, Molin Wang, Brian M. Wolpin, Jeffrey A. Meyerhardt, Andrew T. Chan, Frank B. Hu, Charles S. Fuchs, Shuji Ogino, Edward L. Giovannucci, Kimmie Ng
      Cancer Epidemiology, Biomarkers & Prevention.2021; 30(4): 757.     CrossRef
    • Food anticipatory hormonal responses: A systematic review of animal and human studies
      Aleksandrina Skvortsova, Dieuwke S. Veldhuijzen, Iris E.M. Kloosterman, Gustavo Pacheco-López, Andrea W.M. Evers
      Neuroscience & Biobehavioral Reviews.2021; 126: 447.     CrossRef
    • Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions
      Fulvio Borella, Andrea Roberto Carosso, Stefano Cosma, Mario Preti, Giammarco Collemi, Paola Cassoni, Luca Bertero, Chiara Benedetto
      ACS Infectious Diseases.2021; 7(5): 987.     CrossRef
    • Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products
      Wamidh H. Talib, Asma Ismail Mahmod, Sara Feras. Abuarab, Eliza Hasen, Amer A. Munaim, Shatha Khaled Haif, Amani Marwan Ayyash, Samar Khater, Intisar Hadi AL-Yasari, Lina T. Al Kury
      Molecules.2021; 26(8): 2179.     CrossRef
    • Diabetes increases the risk of meningioma: A systematic review and meta-analysis of observational studies
      Dongjie Shi, Lei Ao, Hua Yu, Juan Li, Yongzhi Xia, Xuedong Wu, Dahai He, Wenjie Zhong, Haijian Xia
      Cancer Epidemiology.2021; 73: 101946.     CrossRef
    • High glucose: an emerging association between diabetes mellitus and cancer progression
      Suangson Supabphol, Wunchana Seubwai, Sopit Wongkham, Charupong Saengboonmee
      Journal of Molecular Medicine.2021; 99(9): 1175.     CrossRef
    • Normalizing glucose levels reconfigures the mammary tumor immune and metabolic microenvironment and decreases metastatic seeding
      Heba Allah M. Alsheikh, Brandon J. Metge, Chae‐Myeong Ha, Dominique C. Hinshaw, Mateus S.V. Mota, Sarah C. Kammerud, Tshering Lama-Sherpa, Noha Sharafeldin, Adam R. Wende, Rajeev S. Samant, Lalita A. Shevde
      Cancer Letters.2021; 517: 24.     CrossRef
    • The prognostic outcome of ‘type 2 diabetes mellitus and breast cancer’ association pivots on hypoxia-hyperglycemia axis
      Ilhaam Ayaz Durrani, Attya Bhatti, Peter John
      Cancer Cell International.2021;[Epub]     CrossRef
    • Insulin-like Growth Factor 2 mRNA-Binding Protein 2—a Potential Link Between Type 2 Diabetes Mellitus and Cancer
      Junguo Cao, Weijia Yan, Xiujian Ma, Haiyan Huang, Hong Yan
      The Journal of Clinical Endocrinology & Metabolism.2021; 106(10): 2807.     CrossRef
    • Fatty acid synthase mediates high glucose‐induced EGFR activation in oral dysplastic keratinocytes
      David J. Wisniewski, Tao Ma, Abraham Schneider
      Journal of Oral Pathology & Medicine.2021; 50(9): 919.     CrossRef
    • Moringa Oleifera Seed Extract Concomitantly Supplemented with Chemotherapy Worsens Tumor Progression in Mice with Triple Negative Breast Cancer and Obesity
      Elizabeth R. M. Zunica, Shengping Yang, Ann Coulter, Christy White, John P. Kirwan, Linda A. Gilmore
      Nutrients.2021; 13(9): 2923.     CrossRef
    • Investigation of Causal Effect of Type 2 Diabetes Mellitus on Lung Cancer: A Mendelian Randomization Study
      Tongtong Hong, Na Qin, Xiaoyu Zhao, Cheng Wang, Yue Jiang, Hongxia Ma, Juncheng Dai
      Frontiers in Genetics.2021;[Epub]     CrossRef
    • Glucose Intolerance and Cancer Risk: A Community-Based Prospective Cohort Study in Shanghai, China
      Juzhong Ke, Tao Lin, Xiaolin Liu, Kang Wu, Xiaonan Ruan, Yibo Ding, Wenbin Liu, Hua Qiu, Xiaojie Tan, Xiaonan Wang, Xi Chen, Zhitao Li, Guangwen Cao
      Frontiers in Oncology.2021;[Epub]     CrossRef
    • Hyperglycemic conditions proliferate triple negative breast cancer cells: role of ornithine decarboxylase
      Caleb C. Capellen, Jose Ortega-Rodas, M. Jane Morwitzer, Hadassha M. N. Tofilau, Matthew Dunworth, Robert A. Casero, Surabhi Chandra
      Breast Cancer Research and Treatment.2021; 190(2): 255.     CrossRef
    • Diabetes Mellitus and Obesity as Risk Factors for Bladder Cancer Prognosis: A Systematic Review and Meta-Analysis
      Yu Lu, Jing Tao
      Frontiers in Endocrinology.2021;[Epub]     CrossRef
    • Breast cancer growth and proliferation is suppressed by the mitochondrial targeted furazano[3,4-b]pyrazine BAM15
      Elizabeth R. M. Zunica, Christopher L. Axelrod, Eunhan Cho, Guillaume Spielmann, Gangarao Davuluri, Stephanie J. Alexopoulos, Martina Beretta, Kyle L. Hoehn, Wagner S. Dantas, Krisztian Stadler, William T. King, Kathryn Pergola, Brian A. Irving, Ingeborg
      Cancer & Metabolism.2021;[Epub]     CrossRef
    • How cancer cells remodel lipid metabolism: strategies targeting transcription factors
      Do-Won Jeong, Seulbee Lee, Yang-Sook Chun
      Lipids in Health and Disease.2021;[Epub]     CrossRef
    • Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents
      Jelena Vekic, Aleksandra Zeljkovic, Aleksandra Stefanovic, Rosaria Vincenza Giglio, Marcello Ciaccio, Manfredi Rizzo
      International Journal of Molecular Sciences.2021; 22(22): 12409.     CrossRef
    • Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease
      Carlos Hernandez-Castillo, Sarah C. Shuck
      Chemical Research in Toxicology.2021; 34(12): 2424.     CrossRef
    • Оцінка прогнозованого ризику онкологічних захворювань у хворих на цукровий діабет 2-го типу
      T.S. Vatseba, L.K. Sokolova, N.M. Koshel
      INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine).2021; 17(1): 86.     CrossRef
    • Can novel adipokines, asprosin and meteorin-like, be biomarkers for malignant mesothelioma?
      N. Kocaman, G. Artaş
      Biotechnic & Histochemistry.2020; 95(3): 171.     CrossRef
    • Metformin attenuates adhesion between cancer and endothelial cells in chronic hyperglycemia by recovery of the endothelial glycocalyx barrier
      Marta Targosz-Korecka, Katarzyna Ewa Malek-Zietek, Damian Kloska, Zenon Rajfur, Ewa Łucja Stepien, Anna Grochot-Przeczek, Marek Szymonski
      Biochimica et Biophysica Acta (BBA) - General Subjects.2020; 1864(4): 129533.     CrossRef
    • Mitigation of Glucolipotoxicity-Induced Apoptosis, Mitochondrial Dysfunction, and Metabolic Stress by N-Acetyl Cysteine in Pancreatic β-Cells
      Arwa Alnahdi, Annie John, Haider Raza
      Biomolecules.2020; 10(2): 239.     CrossRef
    • Antitumour Property ofPterocarpus santalinusSeeds Against DMBA-Induced Breast Cancer in Rats
      Vivek Akhouri, Arun Kumar, Manorma Kumari
      Breast Cancer: Basic and Clinical Research.2020; 14: 117822342095119.     CrossRef
    • Sensitization of hepatocellular carcinoma cells towards doxorubicin and sorafenib is facilitated by glucose-dependent alterations in reactive oxygen species, P-glycoprotein and DKK4
      Surbhi Chouhan, Snahlata Singh, Dipti Athavale, Pranay Ramteke, Muralidharan Vanuopadath, Bipin G Nair, Sudarslal Sadasivan Nair, Manoj Kumar Bhat
      Journal of Biosciences.2020;[Epub]     CrossRef
    • IGF-1 and hyperglycaemia-induced FOXA1 and IGFBP-2 affect epithelial to mesenchymal transition in prostate epithelial cells
      Rehanna Mansor, Jeff Holly, Rachel Barker, Kalina Biernacka, Hanna Zielinska, Anthony Koupparis, Edward Rowe, Jon Oxley, Alex Sewell, Richard M. Martin, Athene Lane, Lucy Hackshaw-McGeagh, Claire Perks
      Oncotarget.2020; 11(26): 2543.     CrossRef
    • Doxorubicin delivery by polymer nanocarrier based on N-methylglucamine resorcinarene
      Tatiana Yu. Sergeeva, Rezeda K. Mukhitova, Leysan R. Bakhtiozina, Irek R. Nizameev, Marsil K. Kadirov, Anastasia S. Sapunova, Alexandra D. Voloshina, Albina Y. Ziganshina, Igor S. Antipin
      Supramolecular Chemistry.2020; 32(2): 150.     CrossRef
    • Counteracting Chemoresistance with Metformin in Breast Cancers: Targeting Cancer Stem Cells
      Samson Mathews Samuel, Elizabeth Varghese, Lenka Koklesová, Alena Líšková, Peter Kubatka, Dietrich Büsselberg
      Cancers.2020; 12(9): 2482.     CrossRef
    • Metformin in breast cancer: preclinical and clinical evidence
      Anindita De, Gowthamarajan Kuppusamy
      Current Problems in Cancer.2020; 44(1): 100488.     CrossRef
    • The Role of Metabolic Factors in Renal Cancers
      Jacek Rysz, Beata Franczyk, Janusz Ławiński, Robert Olszewski, Anna Gluba-Brzózka
      International Journal of Molecular Sciences.2020; 21(19): 7246.     CrossRef
    • Pre-operative dysglycemia is associated with decreased survival in patients with pancreatic neuroendocrine neoplasms
      Marta Sandini, Oliver Strobel, Thomas Hank, Magdalena Lewosinska, Anna Nießen, Thilo Hackert, Markus W. Büchler, Simon Schimmack
      Surgery.2020; 167(3): 575.     CrossRef
    • Recent advances in cancer chemoprevention with phytochemicals
      Yen-Chun Koh, Chi-Tang Ho, Min-Hsiung Pan
      Journal of Food and Drug Analysis.2020; 28(1): 14.     CrossRef
    • NF-κB and STAT3 co-operation enhances high glucose induced aggressiveness of cholangiocarcinoma cells
      Charupong Saengboonmee, Chatchai Phoomak, Suangson Supabphol, Kyle R. Covington, Oliver Hampton, Chaisiri Wongkham, Richard A. Gibbs, Kazuo Umezawa, Wunchana Seubwai, Marie-Claude Gingras, Sopit Wongkham
      Life Sciences.2020; 262: 118548.     CrossRef
    • The Impact of obesity and diabetes mellitus on pancreatic cancer: Molecular mechanisms and clinical perspectives
      Bao Quoc Lam, Sushant K. Shrivastava, Anju Shrivastava, Sharmila Shankar, Rakesh K. Srivastava
      Journal of Cellular and Molecular Medicine.2020; 24(14): 7706.     CrossRef
    • Chronic Diabetes Complications: The Need to Move beyond Classical Concepts
      Dídac Mauricio, Núria Alonso, Mònica Gratacòs
      Trends in Endocrinology & Metabolism.2020; 31(4): 287.     CrossRef
    • O -GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity
      Eunah Kim, Jeong Gu Kang, Min Jueng Kang, Jae Hyung Park, Yeon Jung Kim, Tae Hyun Kweon, Han-Woong Lee, Eek‐hoon Jho, Yong-ho Lee, Seung-Il Kim, Eugene C. Yi, Hyun Woo Park, Won Ho Yang, Jin Won Cho
      Proceedings of the National Academy of Sciences.2020; 117(25): 14259.     CrossRef
    • Circulating free methylglyoxal as a metabolic tumor biomarker in a rat colon adenocarcinoma model
      Philippe Irigaray, Dominique Belpomme
      Molecular and Clinical Oncology.2020;[Epub]     CrossRef
    • Therapeutic effect of Aegle marmelos fruit extract against DMBA induced breast cancer in rats
      Vivek Akhouri, Manorma Kumari, Arun Kumar
      Scientific Reports.2020;[Epub]     CrossRef
    • Biomechanical and Biophysical Properties of Breast Cancer Cells Under Varying Glycemic Regimens
      Diganta Dutta, Xavier-Lewis Palmer, Jose Ortega-Rodas, Vasundhara Balraj, Indrani Ghosh Dastider, Surabhi Chandra
      Breast Cancer: Basic and Clinical Research.2020; 14: 117822342097236.     CrossRef
    • NLRP3 as Putative Marker of Ipilimumab-Induced Cardiotoxicity in the Presence of Hyperglycemia in Estrogen-Responsive and Triple-Negative Breast Cancer Cells
      Vincenzo Quagliariello, Michelino De Laurentiis, Stefania Cocco, Giuseppina Rea, Annamaria Bonelli, Antonietta Caronna, Maria Cristina Lombari, Gabriele Conforti, Massimiliano Berretta, Gerardo Botti, Nicola Maurea
      International Journal of Molecular Sciences.2020; 21(20): 7802.     CrossRef
    • Glucose Concentration in Cell Culture Medium Influences the BRCA1-Mediated Regulation of the Lipogenic Action of IGF-I in Breast Cancer Cells
      Moses O. Koobotse, Dayane Schmidt, Jeff M. P. Holly, Claire M. Perks
      International Journal of Molecular Sciences.2020; 21(22): 8674.     CrossRef
    • Diabetes, Glycated Hemoglobin, and Risk of Cancer in the UK Biobank Study
      Rita Peila, Thomas E. Rohan
      Cancer Epidemiology, Biomarkers & Prevention.2020; 29(6): 1107.     CrossRef
      Saad H. Al-Badry, Khalid G. Al-Fartoosi
      International Journal of Research in Science and Technology.2020; 10(01): 10.     CrossRef
    • Metabolomic profiling of blood plasma in patients with primary brain tumours: Basal plasma metabolites correlated with tumour grade and plasma biomarker analysis predicts feasibility of the successful statistical discrimination from healthy subjects – a p
      Eva Baranovičová, Tomáš Galanda, Miroslav Galanda, Jozef Hatok, Branislav Kolarovszki, Romana Richterová, Peter Račay
      IUBMB Life.2019; 71(12): 1994.     CrossRef
    • Metformin as an adjuvant in breast cancer treatment
      Mohsin HK Roshan, Yan K Shing, Nikolai P Pace
      SAGE Open Medicine.2019; 7: 205031211986511.     CrossRef
    • The added value of fasting blood glucose to serum squamous cell carcinoma antigen for predicting oncological outcomes in cervical cancer patients receiving neoadjuvant chemotherapy followed by radical hysterectomy
      Miao‐Fang Wu, Mei‐Mei Guan, Chang‐Hao Liu, Jie‐Ying Wu, Qun‐Xian Rao, Jing Li
      Cancer Medicine.2019; 8(11): 5068.     CrossRef
    • Visit-to-Visit Hemoglobin A1c Variability Is Associated With Later Cancer Development in Patients With Diabetes Mellitus
      Yuki Saito, Hiroshi Noto, Osamu Takahashi, Daiki Kobayashi
      The Cancer Journal.2019; 25(4): 237.     CrossRef
    • O-GlcNAcylation of GLI transcription factors in hyperglycemic conditions augments Hedgehog activity
      Shamik Das, Sarah K. Bailey, Brandon J. Metge, Ann Hanna, Dominique C. Hinshaw, Mateus Mota, Andres Forero-Torres, John C. Chatham, Rajeev S. Samant, Lalita A. Shevde
      Laboratory Investigation.2019; 99(2): 260.     CrossRef
    • Diabetes and Cancer: Cancer Should Be Screened in Routine Diabetes Assessment
      Sunghwan Suh, Kwang-Won Kim
      Diabetes & Metabolism Journal.2019; 43(6): 733.     CrossRef
    • Herbal Medicines Attenuate PD-L1 Expression to Induce Anti-Proliferation in Obesity-Related Cancers
      Yu-Chen S.H. Yang, Zi-Lin Li, Ya-Jung Shih, James A. Bennett, Jaqueline Whang-Peng, Hung-Yun Lin, Paul J. Davis, Kuan Wang
      Nutrients.2019; 11(12): 2979.     CrossRef
    • Gestational diabetes mellitus and maternal breast cancer risk: a meta-analysis of the literature
      Chuanbo Xie, Wei Wang, Xiuhong Li, Nan Shao, Weidong Li
      The Journal of Maternal-Fetal & Neonatal Medicine.2019; 32(6): 1022.     CrossRef
    • HIPK2 role in the tumor–host interaction: Impact on fibroblasts transdifferentiation CAF‐like
      Alessia Garufi, Gianandrea Traversi, Mara Cirone, Gabriella D'Orazi
      IUBMB Life.2019; 71(12): 2055.     CrossRef
    • Blood glucose, glucose balance, and disease-specific survival after prostate cancer diagnosis in the Finnish Randomized Study of Screening for Prostate Cancer
      Teemu J. Murtola, Samueli M. Sälli, Kirsi Talala, Kimmo Taari, Teuvo L. J. Tammela, Anssi Auvinen
      Prostate Cancer and Prostatic Diseases.2019; 22(3): 453.     CrossRef
    • Reduced chemotherapeutic sensitivity in high glucose condition: implication of antioxidant response
      Alessia Garufi, Gianandrea Traversi, Maria Saveria Gilardini Montani, Valerio D’Orazi, Giuseppa Pistritto, Mara Cirone, Gabriella D’Orazi
      Oncotarget.2019; 10(45): 4691.     CrossRef
    • Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality
      Pranay Ramteke, Ankita Deb, Varsha Shepal, Manoj Kumar Bhat
      Cancers.2019; 11(9): 1402.     CrossRef
    • Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets
      S. Franklyn De Silva, Jane Alcorn
      Pharmaceuticals.2019; 12(2): 68.     CrossRef
    • Serum gamma-glutamyltransferase and the overall survival of metastatic pancreatic cancer
      Yuanyuan Xiao, Haijun Yang, Jian Lu, Dehui Li, Chuanzhi Xu, Harvey A. Risch
      BMC Cancer.2019;[Epub]     CrossRef
    • N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells
      Arwa Alnahdi, Annie John, Haider Raza, M. Firoze Khan
      PLOS ONE.2019; 14(12): e0226696.     CrossRef
    • Targeting receptors of advanced glycation end products (RAGE): Preventing diabetes induced cancer and diabetic complications
      Abu Sufiyan Chhipa, Swapnil P. Borse, Ruma Baksi, Sunali Lalotra, Manish Nivsarkar
      Pathology - Research and Practice.2019; 215(11): 152643.     CrossRef
    • Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer
      Justine Bellier, Marie-Julie Nokin, Eva Lardé, Philippe Karoyan, Olivier Peulen, Vincent Castronovo, Akeila Bellahcène
      Diabetes Research and Clinical Practice.2019; 148: 200.     CrossRef
    • Molecular Mechanisms of Cancer-Induced Sleep Disruption
      William H. Walker, Jeremy C. Borniger
      International Journal of Molecular Sciences.2019; 20(11): 2780.     CrossRef
    • Addition of zoledronic acid to neoadjuvant chemotherapy is not beneficial in patients with HER2-negative stage II/III breast cancer: 5-year survival analysis of the NEOZOTAC trial (BOOG 2010-01)
      Stefanie de Groot, Hanno Pijl, Ayoub Charehbili, Saskia van de Ven, Vincent T. H. B. M. Smit, Elma Meershoek-Klein Kranenbarg, Joan B. Heijns, Laurence J. C. van Warmerdam, Lonneke W. Kessels, M. Wouter Dercksen, Manon J. A. E. Pepels, Hanneke W. M. van L
      Breast Cancer Research.2019;[Epub]     CrossRef
    • Assessing the Effect of Various Blood Glucose Levels on 18F-FDG Activity in the Brain, Liver, and Blood Pool
      Ismet Sarikaya, Ali Sarikaya, Prem Sharma
      Journal of Nuclear Medicine Technology.2019; 47(4): 313.     CrossRef
    • Efficacy of Complementary Therapies in the Quality of Life of Breast Cancer Survivors
      Sahar Zaidi, Showket Hussain, Shalini Verma, Zubia Veqar, Asiya Khan, Sheeraz Un Nazir, Neha Singh, Jamal Ali Moiz, Pranay Tanwar, Anurag Srivastava, G. K. Rath, Ravi Mehrotra
      Frontiers in Oncology.2018;[Epub]     CrossRef
    • A Role for Hypocretin/Orexin in Metabolic and Sleep Abnormalities in a Mouse Model of Non-metastatic Breast Cancer
      Jeremy C. Borniger, William H. Walker II, Surbhi, Kathryn M. Emmer, Ning Zhang, Abigail A. Zalenski, Stevie L. Muscarella, Julie A. Fitzgerald, Alexandra N. Smith, Cornelius J. Braam, Tial TinKai, Ulysses J. Magalang, Maryam B. Lustberg, Randy J. Nelson,
      Cell Metabolism.2018; 28(1): 118.     CrossRef
    • Model-based in silico analysis of the PI3K/Akt pathway: the elucidation of cross-talk between diabetes and breast cancer
      Sammia Rehman, Ayesha Obaid, Anam Naz, Amjad Ali, Shahzina Kanwal, Jamil Ahmad
      PeerJ.2018; 6: e5917.     CrossRef
    • Inhibitory Effect of Anoectochilus formosanus Extract on Hyperglycemia-Related PD-L1 Expression and Cancer Proliferation
      Yih Ho, Yan-Fang Chen, Li-Hsuan Wang, Kuang-Yang Hsu, Yu-Tang Chin, Yu-Chen S. H. Yang, Shwu-Huey Wang, Yi-Ru Chen, Ya-Jung Shih, Leroy F. Liu, Kuan Wang, Jacqueline Whang-Peng, Heng-Yuan Tang, Hung-Yun Lin, Hsuan-Liang Liu, Shwu-Jiuan Lin
      Frontiers in Pharmacology.2018;[Epub]     CrossRef
    • Hypoxia driven glycation: Mechanisms and therapeutic opportunities
      Mohammad Imran Khan, Suvasmita Rath, Vaqar Mustafa Adhami, Hasan Mukhtar
      Seminars in Cancer Biology.2018; 49: 75.     CrossRef
    • Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice
      Roxanne Weiss, Elizabeth Fernandez, Yuhong Liu, Randy Strong, Adam B. Salmon
      Aging.2018; 10(3): 386.     CrossRef
    • High glucose induces epithelial‑mesenchymal transition and results in the migration and invasion of colorectal cancer cells
      Jiayan Wu, Jiayi Chen, Yang Xi, Fuyan Wang, Hongcun Sha, Lin Luo, Yabin Zhu, Xiaoming Hong, Shizhong Bu
      Experimental and Therapeutic Medicine.2018;[Epub]     CrossRef
    • Laminar shear stress inhibits high glucose-induced migration and invasion in human bladder cancer cells
      Yu-Hsiang Lee, Chien-Hsuan Yeh
      In Vitro Cellular & Developmental Biology - Animal.2018; 54(2): 120.     CrossRef
    • Methylglyoxal-derived stress: An emerging biological factor involved in the onset and progression of cancer
      Akeila Bellahcène, Marie-Julie Nokin, Vincent Castronovo, Casper Schalkwijk
      Seminars in Cancer Biology.2018; 49: 64.     CrossRef
    • Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer
      Armando Rojas, Carolina Añazco, Ileana González, Paulina Araya
      Carcinogenesis.2018; 39(4): 515.     CrossRef
    • Good glycaemic control is associated with a better prognosis in breast cancer patients with type 2 diabetes mellitus
      Yen-Lin Chang, Wayne Huey-Herng Sheu, Shih-Yi Lin, Wen-Shyong Liou
      Clinical and Experimental Medicine.2018; 18(3): 383.     CrossRef
    • High glucose contributes to the proliferation and migration of non-small-cell lung cancer cells via GAS5-TRIB3 axis
      Cheng-Zhi Ding, Xu-Feng Guo, Guo-Lei Wang, Hong-Tao Wang, Guang-Hui Xu, Yuan-Yuan Liu, Zhen-Jiang Wu, Yu-Hang Chen, Jiao Wang, Wen-Guang Wang
      Bioscience Reports.2018;[Epub]     CrossRef
    • Challenges and perspectives in the treatment of diabetes associated breast cancer
      Samson Mathews Samuel, Elizabeth Varghese, Sharon Varghese, Dietrich Büsselberg
      Cancer Treatment Reviews.2018; 70: 98.     CrossRef
    • Linking type 2 diabetes and gynecological cancer: an introductory overview
      Emanuela Anastasi, Tiziana Filardi, Sara Tartaglione, Andrea Lenzi, Antonio Angeloni, Susanna Morano
      Clinical Chemistry and Laboratory Medicine (CCLM).2018; 56(9): 1413.     CrossRef
    • Hyperglycaemia and Survival in Solid Tumours: A Systematic Review and Meta-analysis
      R. Barua, A.J. Templeton, B. Seruga, A. Ocana, E. Amir, J.-L. Ethier
      Clinical Oncology.2018; 30(4): 215.     CrossRef
    • Hepatocellular carcinoma-associated hypercholesterolemia: involvement of proprotein-convertase-subtilisin-kexin type-9 (PCSK9)
      Dipti Athavale, Surbhi Chouhan, Vimal Pandey, Shyamananda Singh Mayengbam, Snahlata Singh, Manoj Kumar Bhat
      Cancer & Metabolism.2018;[Epub]     CrossRef
    • An insight on the association of glycation with hepatocellular carcinoma
      Nasimudeen R. Jabir, Saheem Ahmad, Shams Tabrez
      Seminars in Cancer Biology.2018; 49: 56.     CrossRef
    • Risk score system for the prediction of hepatocellular carcinoma in patients with type 2 diabetes: Taiwan Diabetes Study
      Tsai-Chung Li, Chia-Ing Li, Chiu-Shong Liu, Wen-Yuan Lin, Chih-Hsueh Lin, Sing-Yu Yang, Cheng-Chieh Lin
      Seminars in Oncology.2018; 45(5-6): 264.     CrossRef
    • RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review
      Gowri Palanissami, Solomon F. D. Paul
      Hormones and Cancer.2018; 9(5): 295.     CrossRef
    • Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation
      Catharina Bartmann, Sudha R. Janaki Raman, Jessica Flöter, Almut Schulze, Katrin Bahlke, Jana Willingstorfer, Maria Strunz, Achim Wöckel, Rainer J. Klement, Michaela Kapp, Cholpon S. Djuzenova, Christoph Otto, Ulrike Kämmerer
      Cancer & Metabolism.2018;[Epub]     CrossRef
    • Obesity, Diabetes and Gastrointestinal Malignancy: The role of Metformin and other Anti-diabetic Therapy
      McFarlane Samy I
      Global Journal of Obesity, Diabetes and Metabolic Syndrome.2018; : 008.     CrossRef
    • Pretreatment glycemic control status is an independent prognostic factor for cervical cancer patients receiving neoadjuvant chemotherapy for locally advanced disease
      Jing Li, Ni-ya Ning, Qun-xian Rao, Rong Chen, Li-juan Wang, Zhong-qiu Lin
      BMC Cancer.2017;[Epub]     CrossRef
    • Differences in risk factors of malignancy between men and women with type 2 diabetes: A retrospective case-control study
      Mariusz Dąbrowski, Elektra Szymańska-Garbacz, Zofia Miszczyszyn, Tadeusz Dereziński, Leszek Czupryniak
      Oncotarget.2017; 8(40): 66940.     CrossRef
    • Beta-glucans and cancer: The influence of inflammation and gut peptide
      Sara Baldassano, Giulia Accardi, Sonya Vasto
      European Journal of Medicinal Chemistry.2017; 142: 486.     CrossRef
    • Enemies or weapons in hands: investigational anti-diabetic drug glibenclamide and cancer risk
      Rui Gao, Tao Yang, Wei Xu
      Expert Opinion on Investigational Drugs.2017; 26(7): 853.     CrossRef
    • Hyperglycemia triggers HIPK2 protein degradation
      Silvia Baldari, Alessia Garufi, Marisa Granato, Laura Cuomo, Giuseppa Pistritto, Mara Cirone, Gabriella D’Orazi
      Oncotarget.2017; 8(1): 1190.     CrossRef
    • Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner
      Yiwei Zhang, Shelya X. Zeng, Qian Hao, Hua Lu
      Developmental Biology.2017; 423(1): 34.     CrossRef
    • Modulation of Mammary Stromal Cell Lactate Dynamics by Ambient Glucose and Epithelial Factors
      Nicolas Tobar, Omar Porras, Patricio C. Smith, L. Felipe Barros, Jorge Martínez
      Journal of Cellular Physiology.2017; 232(1): 136.     CrossRef
    • Energy metabolism in glioblastoma stem cells: PPARα a metabolic adaptor to intratumoral microenvironment
      Alessia Fidoamore, Loredana Cristiano, Chiara Laezza, Renato Galzio, Elisabetta Benedetti, Benedetta Cinque, Andrea Antonosante, Michele d’Angelo, Vanessa Castelli, Maria Grazia Cifone, Rodolfo Ippoliti, Antonio Giordano, Annamaria Cimini
      Oncotarget.2017; 8(65): 108430.     CrossRef
    • Hyperglycemia is Associated with Poor Survival in Primary Central Nervous System Lymphoma Patients
      Ayumi Debata, Koichi Yoshida, Kenta Ujifuku, Haruna Yasui, Kensaku Kamada, Daisuke Niino, Takayuki Matsuo
      Tumori Journal.2017; 103(3): 272.     CrossRef
    • Micronucleus, cell-free DNA, and plasma glycan composition in the newborns of healthy and diabetic mothers
      Aleksandra Fucic, Vedrana Guszak, Toma Keser, Jasenka Wagner, Emilja Juretić, Davor Plavec, Ranko Stojković, Olga Gornik, Gordan Lauc
      Mutation Research/Genetic Toxicology and Environmental Mutagenesis.2017; 815: 6.     CrossRef
    • Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway
      A Vasconcelos-dos-Santos, H F B R Loponte, N R Mantuano, I A Oliveira, I F de Paula, L K Teixeira, J C M de-Freitas-Junior, K C Gondim, N Heise, R Mohana-Borges, J A Morgado-Díaz, W B Dias, A R Todeschini
      Oncogenesis.2017; 6(3): e306.     CrossRef
    • Associations between prediagnostic blood glucose levels, diabetes, and glioma
      Judith Schwartzbaum, Michael Edlinger, Victoria Zigmont, Pär Stattin, Grzegorz A. Rempala, Gabriele Nagel, Niklas Hammar, Hanno Ulmer, Bernhard Föger, Göran Walldius, Jonas Manjer, Håkan Malmström, Maria Feychting
      Scientific Reports.2017;[Epub]     CrossRef
    • Gestational diabetes mellitus may be associated with increased risk of breast cancer
      Yong-Moon Mark Park, Katie M O'Brien, Shanshan Zhao, Clarice R Weinberg, Donna D Baird, Dale P Sandler
      British Journal of Cancer.2017; 116(7): 960.     CrossRef
    • The transcription factor carbohydrate-response element-binding protein (ChREBP): A possible link between metabolic disease and cancer
      Katsumi Iizuka
      Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.2017; 1863(2): 474.     CrossRef
    • The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis
      Xiao Zhang, Yongxia Qiao, Qi Wu, Yan Chen, Shaowu Zou, Xiangfan Liu, Guoqing Zhu, Yinghui Zhao, Yuxin Chen, Yongchun Yu, Qiuhui Pan, Jiayi Wang, Fenyong Sun
      Nature Communications.2017;[Epub]     CrossRef
    • Anthocyanins from Purple Corn Ameliorated Tumor Necrosis Factor‐α‐Induced Inflammation and Insulin Resistance in 3T3‐L1 Adipocytes via Activation of Insulin Signaling and Enhanced GLUT4 Translocation
      Diego Luna‐Vital, Matthew Weiss, Elvira Gonzalez de Mejia
      Molecular Nutrition & Food Research.2017;[Epub]     CrossRef
    • Hyperglycaemia and aberrated insulin signalling stimulate tumour progression via induction of the extracellular matrix component hyaluronan
      Sören Twarock, Christina Reichert, Ulrike Peters, Daniel J. Gorski, Katharina Röck, Jens W. Fischer
      International Journal of Cancer.2017; 141(4): 791.     CrossRef
    • Das Karzinom in der Polarität zwischen Stoffwechsel- und Nerven-Sinnes-System – Konsequenzen für die Therapie
      H. Schramm
      Der Merkurstab.2017; 70(3): 221.     CrossRef
    • Addressing the Role of Obesity in Endometrial Cancer Risk, Prevention, and Treatment
      Michaela A. Onstad, Rosemarie E. Schmandt, Karen H. Lu
      Journal of Clinical Oncology.2016; 34(35): 4225.     CrossRef
    • Mechanisms through which diabetes mellitus influences renal cell carcinoma development and treatment: A review of the literature
      Dominika Labochka, Barbara Moszczuk, Wojciech Kukwa, Cezary Szczylik, Anna M. Czarnecka
      International Journal of Molecular Medicine.2016; 38(6): 1887.     CrossRef
    • Cancer Risk in Patients With Empyema
      Chung-Jen Teng, Yu-Wen Hu, Chiu-Mei Yeh, Tzeng-Ji Chen, Chia-Jen Liu
      Medicine.2016; 95(9): e2934.     CrossRef
    • High Glucose Stimulates Tumorigenesis in Hepatocellular Carcinoma Cells Through AGER-Dependent O-GlcNAcylation of c-Jun
      Yongxia Qiao, Xiao Zhang, Yue Zhang, Yulan Wang, Yanfeng Xu, Xiangfan Liu, Fenyong Sun, Jiayi Wang
      Diabetes.2016; 65(3): 619.     CrossRef
    • Association between baseline serum glucose, triglycerides and total cholesterol, and prostate cancer risk categories
      Rhonda Arthur, Henrik Møller, Hans Garmo, Lars Holmberg, Pår Stattin, Håkan Malmstrom, Mats Lambe, Niklas Hammar, Göran Walldius, David Robinson, Ingmar Jungner, Mieke Van Hemelrijck
      Cancer Medicine.2016; 5(6): 1307.     CrossRef
    • Risk factors for cancer development in type 2 diabetes: A retrospective case-control study
      Mariusz Dąbrowski, Elektra Szymańska-Garbacz, Zofia Miszczyszyn, Tadeusz Dereziński, Leszek Czupryniak
      BMC Cancer.2016;[Epub]     CrossRef
    • High-fat Western diet–induced obesity contributes to increased tumor growth in mouse models of human colon cancer
      Ann Marie O'Neill, Christine M. Burrington, Erin A. Gillaspie, Darin T. Lynch, Melissa J. Horsman, Michael W. Greene
      Nutrition Research.2016; 36(12): 1325.     CrossRef
    • Diabetes Pharmacotherapies and Bladder Cancer: A Medicare Epidemiologic Study
      Todd A. Mackenzie, Rebecca Zaha, Jeremy Smith, Margaret R. Karagas, Nancy E. Morden
      Diabetes Therapy.2016; 7(1): 61.     CrossRef
    • Diabetes mellitus stimulates pancreatic cancer growth and epithelial-mesenchymal transition-mediated metastasis via a p38 MAPK pathway
      Lishan Wang, Ying-Ying Bai, Yang Yang, Fangfang Hu, Yonghui Wang, Zeqian Yu, Zhangjun Cheng, Jiahua Zhou
      Oncotarget.2016; 7(25): 38539.     CrossRef
    • Prognostic Significance of Hyperglycemia in Patients with Brain Tumors: a Meta-Analysis
      Hongwei Liu, Zhixiong Liu, Bing Jiang, Xiping Ding, Lei Huo, Xin Wan, Jinfang Liu, Zhenyun Xia
      Molecular Neurobiology.2016; 53(3): 1654.     CrossRef
    • Impact of Hyperglycemia on Outcomes among Patients Receiving Neoadjuvant Chemotherapy for Bulky Early Stage Cervical Cancer
      Jing Li, Miao-fang Wu, Huai-wu Lu, Bing-zhong Zhang, Li-juan Wang, Zhong-qiu Lin, Xing Xie
      PLOS ONE.2016; 11(11): e0166612.     CrossRef
    • Obesity, Inflammation, and Cancer
      Tuo Deng, Christopher J. Lyon, Stephen Bergin, Michael A. Caligiuri, Willa A. Hsueh
      Annual Review of Pathology: Mechanisms of Disease.2016; 11(1): 421.     CrossRef
    • Hyperglycemia, tumorigenesis, and chronic inflammation
      Shu-Chun Chang, Wei-Chung Vivian Yang
      Critical Reviews in Oncology/Hematology.2016; 108: 146.     CrossRef
    • Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis
      Marie-Julie Nokin, Florence Durieux, Paul Peixoto, Barbara Chiavarina, Olivier Peulen, Arnaud Blomme, Andrei Turtoi, Brunella Costanza, Nicolas Smargiasso, Dominique Baiwir, Jean L Scheijen, Casper G Schalkwijk, Justine Leenders, Pascal De Tullio, Elettra
      eLife.2016;[Epub]     CrossRef
    • ZnCl2 sustains the adriamycin-induced cell death inhibited by high glucose
      A Garufi, D Trisciuoglio, M Cirone, G D'Orazi
      Cell Death & Disease.2016; 7(6): e2280.     CrossRef
    • Controlling Malglycemia in Patients Undergoing Treatment for Cancer
      Susan Storey, Veronica Brady, Ashley Leak Bryant, Ellen Davis, Marilyn Hammer, Denise Hershey, Jill Olausson, Jane Seley
      Clinical Journal of Oncology Nursing.2016; 20(1): 92.     CrossRef
    • Metformin, Diabetes, and Survival among U.S. Veterans with Colorectal Cancer
      Jessica K. Paulus, Christina D. Williams, Furha I. Cossor, Michael J. Kelley, Robert E. Martell
      Cancer Epidemiology, Biomarkers & Prevention.2016; 25(10): 1418.     CrossRef
    • Thymic emigration patterns in patients with type 2 diabetes treated with metformin
      Grzegorz Dworacki, Olzhas Urazayev, Yerbol Bekmukhambetov, Saule Iskakova, Bartosz A. Frycz, Paweł P. Jagodziński, Marzena Dworacka
      Immunology.2015; 146(3): 456.     CrossRef
    • Resveratrol in the treatment of pancreatic cancer
      Qinhong Xu, Liang Zong, Xin Chen, Zhengdong Jiang, Ligang Nan, Jiahui Li, Wanxing Duan, Jianjun Lei, Lun Zhang, Jiguang Ma, Xuqi Li, Zheng Wang, Zheng Wu, Qingyong Ma, Zhenhua Ma
      Annals of the New York Academy of Sciences.2015; 1348(1): 10.     CrossRef
    • Effect of hyperglycemia on hepatocellular carcinoma development in diabetes
      Yasuhiro Niwa, Kota Ishikawa, Masatoshi Ishigami, Takashi Honda, Koichi Achiwa, Takako Izumoto, Ryuya Maekawa, Kaori Hosokawa, Atsushi Iida, Yusuke Seino, Yoji Hamada, Hidemi Goto, Yutaka Oiso, Hiroshi Arima, Shin Tsunekawa
      Biochemical and Biophysical Research Communications.2015; 463(3): 344.     CrossRef
    • The insulin-like growth factor I system: Physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome
      Jun Ren, Piero Anversa
      Biochemical Pharmacology.2015; 93(4): 409.     CrossRef
    • Diabetes and risk of cancer
      Toshiya Atsumi
      Diabetology International.2015; 6(3): 190.     CrossRef
    • The influencing factors associated with glycemic control among adult diabetes patients
      Kisook Kim
      Journal of the Korea Academia-Industrial cooperation Society.2015; 16(5): 3284.     CrossRef
    • Reply to “Preoperative Evaluation of Pancreatic Adenocarcinoma”
      Siva P. Raman
      American Journal of Roentgenology.2015; 205(2): W226.     CrossRef

    • PubReader PubReader
    • Cite this Article
      Cite this Article
      export Copy Download
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      • Citation for the content below
      Hyperglycemia as a Risk Factor for Cancer Progression
      Diabetes Metab J. 2014;38(5):330-336.   Published online October 17, 2014
    • XML DownloadXML Download
    Ryu TY, Park J, Scherer PE. Hyperglycemia as a Risk Factor for Cancer Progression. Diabetes Metab J. 2014;38(5):330-336.

    Diabetes Metab J : Diabetes & Metabolism Journal
    Close layer