Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
2 "p38 MAPK"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Articles
Cell Cycle Progression of Vascular Smooth Muscle cell Through Modulation of p38 MAPK and GSK-3beta Activities Under High Glucose Condition.
Yang Ho Kang, In Ju Kim, Yong Ki Kim, Seok Man Son
Korean Diabetes J. 2005;29(5):418-431.   Published online September 1, 2005
  • 845 View
  • 18 Download
AbstractAbstract PDF
BACKGOUND: Macroangiopathy, with atherosclerosis, is the leading cause of mortality and morbidity in diabetic patients. Vascular smooth muscle cells play a crucial role in atherosclerosis, as they proliferate, migrate and express genes that encode inducible growth factors. However, the mechanisms induced by hyperglycemia that accelerate the proliferative change of vascular smooth muscle cells in diabetes remain unclear. This study was aimed at clarifying the respective roles of hyperglycemia in the acceleration of vascular complications in diabetes, examine the effects of hyperglycemia on vascular smooth muscle cell proliferation and the possible underlying mechanisms, including cell cycle progression. METHODS: Primary cultured rat aortic RASMs were exposed to normal glucose(5 mmol/L D-glucose), high glucose(30 mmol/L D-glucose) or an osmotic control (5mmol/L D-glucose plus 24.5 mmol/L mannitol) for 72 hours. The effect of high glucose on cell proliferation was determined by assessing the cell count and BrdU incorporation. Proteins involved in the cell proliferation pathway (PDK1, Akt/PKB, p42/44 MAPK, p38 MAPK, GSK-3beta) and those in cell cycle progression (cdk4, cyclin D, cdk2, cyclin E and ppRb phosphorylation) were determined by Western blot analysis. cdk4 kinase and PKC activity assays were also performed. RESULTS: A high level of glucose increased both the cell count(P<0.01) and BrdU incorporation(P<0.01). The PDK1, Akt/PKB and p42/44 MAPK activities were not significantly increased. A high level of glucose significantly increased the activities of p38 MAPK (P<0.01) and GSK-3beta(P<0.05) and the expressions of cdk4, cyclin D and ppRb phosphorylation. The cdk4 (P<0.01) and PKC (P<0.05) activities were also significantly increased. The inhibition of protein kinase C with GF109203X markedly reduced the phosphorylations of p38 MAPK and GSK-3betaand the expressions of cdk4 and cyclin D. In addition, pretreatment with GF109203X decreased the cell number in response to a high glucose level. CONCLUSION: These findings suggest that a high level of glucose increases vascular smooth muscle cell proliferation, with the possible mechanism further increases the G1 to S phase cell cycle progression via the activation of PKC, p38 MAPK and GSK-3beta.
Increase in Fatty Acid Oxidation by AICAR: the Role of p38 MAPK.
Woo Je Lee, Jin Yob Kim, Sung Jin Bae, Eun Hee Koh, Sung Min Han, Hye Sun Park, Hyun Sik Kim, Min Seon Kim, Joong Yeol Park, Ki Up Lee
Korean Diabetes J. 2005;29(1):15-21.   Published online January 1, 2005
  • 1,135 View
  • 25 Download
AbstractAbstract PDF
BACKGROUND
AMPK is an enzyme that increases glucose transport and fatty acid oxidation in skeletal muscle. The activation of AMPK stimulates fatty acid oxidation by decreasing the acetyl CoA carboxylase (ACC) activity and the concentration of malonyl-CoA. However, a recent study has reported a dissociation of AMPK activity and ACC phosphorylation in skeletal muscle during periods of prolonged exercise. This suggested that there is an additional mechanism for AMPK-induced fatty acid oxidation in skeletal muscle. METHODS: Plamitate oxidation was measured via the generation of [3H]-water generation from 9,10[3H]-palmitate after treating various concentrations of AICAR on the C2C12 mouse skeletal muscle cell line. Western analysis was used to test for the possible activation of p38 MAPK by AICAR. Involvement of p38 MAPK in the AICAR-induced increase in fatty acid oxidation was tested for by using SB203580, a p38 MAPK inhibitor. RESULTS: C2C12 cell treated with AICAR exhibited a dose-dependent increase in fatty acid oxidation compared to the cells that were not treated with AICAR. Western blot analysis revealed that phosphorylation of p38 MAPK was increased 2.5 folds after AICAR treatment. The increase of fatty acid oxidation with AICAR treatment was significantly inhibited by a treatment of SB203580; this indicated the involvement of p38 MAPK on the AICAR-induced increase in fatty acid oxidation. CONCLUSION: AICAR stimulated the fatty acid oxidation by activating p38 MAPK. This is a novel pathway by which AMPK activation in skeletal muscle increases the fatty acid oxidation

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer