BACKGROUND Several high-throughput gene analysis techniques - differential display PCR, suppression subtraction hybridization (SSH), serial analysis of gene expression (SAGE), and DNA microarray - have permitted transcriptome profiling to understand the molecular pathogenesis of multifactorial diseases. But these techniques are of no great utility regarding feasibility, reproducibility, cost, and the amount of material required for analysis. To establish more practical method for transcription factor transcriptome profiling, we combined degenerate reverse transcriptase-polymerase chain reaction (RT-PCR) and single strand conformational polymorphism (SSCP) technique. METHODS: We categorized 417 human/mouse transcription factor mRNA into 92 small groups according to homology with ClustalW method and established 92 degenerate RT-PCR including common motives of the 92 small groups with the software program of CODEHOP, Primer Premier, Amplify 1.2. Further analysis on the amplified PCR products was performed by SSCP. This system was applied for the evaluation of changes on transcription factor transcriptome of differentiated 3T3-L1 adipocyte treated with TNF-alpha. RESULTS: 82 groups and 52 groups showed amplification of PCR before and after TNF-alpha treatment respectively and 24 groups showed significant amplification difference after TNF-alpha treatment. After TNF-alpha treatment for 48 hours, mRNA expressions of group 7, 30, and 33 which include adipocyte related transcription factors such as CEBP-alpha, RXR-alpha, PPAR-gamma were downregulated and mRNA expression of group 8 including preadipocyte abundant CEBP-beta was upregulated. These results are largely concordant with the results analyzed by oligonucleotide microarray. Randomly selected single PCR bands of group 28 and 75 on agarose electrophoresis displayed additional multiple bands by SSCP and necessitated addition of this technique to degenerate RT-PCR for further analysis. CONCLUSION: It could be suggested that degenerate RT-PCR/SSCP is practical method and could be used as a screening test for transcriptome profiling of various disease states with further validation study.
Young A Kim, Jung Hyun Noh, Dong Jun Kim, Tae Hyun Um, Chong Rae Cho, Na young Jang, Soo Kyung Kwon, Soon Hee Lee, Jeong Hyun Park, Kyung Soo Ko, Byoung Doo Rhee, Kyung Ho Lim
Korean Diabetes J. 2006;30(2):104-111. Published online March 1, 2006
BACKGROUND To determine plasma adipokines such as adiponectin, IL-6 and TNF-alpha concentrations in women with and without polycystic ovary syndrome (PCOS) and to assess possible correlations of adipocytokines to the hormonal and metabolic parameters, including measures of insulin resistance (IR). METHODS: Forty-four selected women were classified as follows: 13 obese (body mass index [BMI] > or = 25 kg/m(2)) with PCOS; 15 non-obese (BMI < 25 kg/m(2)) with PCOS; 8 obese without PCOS, and 8 non-obese without PCOS. Blood samples were collected from all women with or without PCOS after an overnight fast. Serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), total testosterone, 17-alpha-hydroxyprogesterone, dehydroepiandrosterone sulfate (DHEA-S), sex hormone-binding globulin (SHBG), insulin, glucose, adiponectin, TNF-alpha and IL-6 were measured. Measures of IR included HOMA-IR and QUICKI. RESULTS: In non-obese group, fasting insulin levels and HOMA-IR in PCOS were significantly higher compared to control. However, Adiponectin, TNF-alpha and IL-6 concentrations were found not to be different in obese women with PCOS as compared with obese women without PCOS and in non-obese women with PCOS as compared with non-obese women without PCOS. Adiponectin concentrations correlated inversely with BMI, waist circumference (WC), total fat mass, serum insulin, and HOMA-IR in PCOS group. However, multiple regression analysis showed that BMI was the only independent determinant of adiponectin concentration. CONCLUSION: Our results suggest that insulin sensitivity per se probably does not play any role in the control of adipokines levels such as adiponectin, TNF-alpha and IL-6 in PCOS women
Citations
Citations to this article as recorded by
Adiponectin in Women with Polycystic Ovary Syndrome Hyun-Young Shin, Duk-Chul Lee, Ji-Won Lee Korean Journal of Family Medicine.2011; 32(4): 243. CrossRef
BACKGROUND Accelerated atherosclerotic vascular disease is the leading cause of mortality in patients with diabetes mellitus. To clarify the mechanisms that cause macrovascular dysfunction in diabetes, we examined the effect of high glucose on the adhesion of neutrophils to the endothelial cells and release of TNF-a from cultured rabbit aortic endotheIial cells. METHODS: Rabbit aortic endothelial cells in primary culture were prepared by the collagenase digestion method. Cells were incubated for various time upto 24 hours to evaluate TNF-a response to different glucose concentrations(0, 5.5, 11, 22mmol/L). Isolated rabbit neutrophils were incubated with monolayers of rabbit aortic endothelial cells under different glucose condition. RESULTS: After 24 hrs incubation with various concentrations of glucose, neutrophil adherence to high concentration of glucose(11 and 22mM)-treated endothelium was significantly increased(46+/-7 and 64 +/-6%, respectively) compared with adhesion to low concentration of glucose(0 or 5.5mM)-treated endothelium(3l +/-5 and 30+/-3%, respectively), In addition, when TNF-a imrnunoreactivity in the culture medium was measured by enzyme-linked immunoassay after 24 hours of incubation with various concentration of glucose, the secretion of TNF-a from endothelial cells was significantly increased in a concentration-dependent manner upon exposure to high concentration of glucose, CONCLUSION: The results of this study ciemonstrate tht high concentration of glucose stimulates neutrophil adhesion to endothelial cells in association with increased production of TNF-a from endothelial cells. These results suggest that glucose directly causes increased interaction between neutrophil and endothelial cell through a TNF-a-dependent mechaniasm,
BACKGROUND Vascular disease accounts for the majority of the clinical complications of diabetes mellitus. Changes in local control of vascular tone such as imbalanced production of relaxing and contracting factors by endothelium may be related to the initiation and maintenance of abnormal vascular reactivity characteristically seen in diabetic vascular complications. Cytokines and growth factors released from injured endothelial cells, T-cells, and macro-phages enhance atherogenesis. In this study, we examined NO and TNF-a released from cultured rabbit aortic endothelial cells(RAECs) under different glucose concentration to investigate the relationship between high glucose and endothelial cell dysfunction. METHODS: The thoracic and abdominal aortae of rabbit(23kg) were isolated and periadventitial connective tissue was carefully removed. Rabbit aortic endothelial cells in primary culture were prepared by the m.ethod of Schwartz with modification. RAECs were grown to confluence in 25 cm2 flask in DMEM supplemented with 20% FBS, 150pg/mL endothelial cell growth supplernent, 90pg/mL heparin, 100 U/mL penicillin and 100pg/mL streptomycin at 37'C in humidified 5% carbon dioxide in air. For experiments, confluent cells were replaced in 1 1 mm, 48 well plate containing same medium composition. Cells were then incubated in the presence or absence of FBS for various times up to 48 hours(time course) to eveluate the NO and TNF-a response to different glucose concentrations(0, 5.5, 11, 22, and 44 mmol/ L). Cells were also incubated with various concentration of ACH and ADP(10, 10', 10 and 10' mol/L) and 10' mol/L of ACH or ADP with different glucose concentrations for 24 hours to evaluate stimulated effect of ACH and ADP on NO release. RESULTS: 1) Total NO release from RAECs was significantly in a time-dependent. After 48 hours incubation, the total secretion of NO was significantly higher in culture medium with FRS than without FBS. 2) Glucose concentration resembling severe hyper-glycemic conditions(22 and 44 mmol/L) significantly inhibited NO release from RAECs, 3) Acetylcholine and ADP induced a clear dose-dependent NO release in RAECs. 4) Stimulation of acetylcholine and ADP on NO release according to different glucose concentration was not significantly higher than NO release in culture medium with glucose alone. 5) The increment in TNF-a levels was associated with a significant increase at higher glucose concentration, 6) There was a negative correlation between NO and TNF-a release in culture medium with FBS but not in culture medium without FBS. CONCLUSION: Our data show that decreased NO release and increased TNF-a release from RAECs were noted under high glucose concentration. Such interaction could play a significant role in the development of diabetic vascular complication in hyperglycernic conditions.