Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal



Page Path
HOME > Search
3 "Podocytes"
Article category
Publication year
Funded articles
Original Article
Basic Research
Article image
Inhibition of Ceramide Accumulation in Podocytes by Myriocin Prevents Diabetic Nephropathy
Chang-Yun Woo, Ji Yeon Baek, Ah-Ram Kim, Chung Hwan Hong, Ji Eun Yoon, Hyoun Sik Kim, Hyun Ju Yoo, Tae-Sik Park, Ranjan Kc, Ki-Up Lee, Eun Hee Koh
Diabetes Metab J. 2020;44(4):581-591.   Published online November 4, 2019
  • 6,495 View
  • 165 Download
  • 28 Web of Science
  • 31 Crossref
AbstractAbstract PDFPubReader   ePub   

Ceramides are associated with metabolic complications including diabetic nephropathy in patients with diabetes. Recent studies have reported that podocytes play a pivotal role in the progression of diabetic nephropathy. Also, mitochondrial dysfunction is known to be an early event in podocyte injury. Thus, we tested the hypothesis that ceramide accumulation in podocytes induces mitochondrial damage through reactive oxygen species (ROS) production in patients with diabetic nephropathy.


We used Otsuka Long Evans Tokushima Fatty (OLETF) rats and high-fat diet (HFD)-fed mice. We fed the animals either a control- or a myriocin-containing diet to evaluate the effects of the ceramide. Also, we assessed the effects of ceramide on intracellular ROS generation and on podocyte autophagy in cultured podocytes.


OLETF rats and HFD-fed mice showed albuminuria, histologic features of diabetic nephropathy, and podocyte injury, whereas myriocin treatment effectively treated these abnormalities. Cultured podocytes exposed to agents predicted to be risk factors (high glucose, high free fatty acid, and angiotensin II in combination [GFA]) showed an increase in ceramide accumulation and ROS generation in podocyte mitochondria. Pretreatment with myriocin reversed GFA-induced mitochondrial ROS generation and prevented cell death. Myriocin-pretreated cells were protected from GFA-induced disruption of mitochondrial integrity.


We showed that mitochondrial ceramide accumulation may result in podocyte damage through ROS production. Therefore, this signaling pathway could become a pharmacological target to abate the development of diabetic kidney disease.


Citations to this article as recorded by  
  • Interplay of lipid metabolism and inflammation in podocyte injury
    Zilv Luo, Zhaowei Chen, Jijia Hu, Guohua Ding
    Metabolism.2024; 150: 155718.     CrossRef
  • A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer’s disease, and their co-morbidities
    Yun Pan, Jieying Li, Panjie Lin, Lihua Wan, Yiqian Qu, Lingyong Cao, Lei Wang
    Frontiers in Pharmacology.2024;[Epub]     CrossRef
  • Ceramides and mitochondrial homeostasis
    Song Ding, Guorui Li, Tinglv Fu, Tianyu Zhang, Xiao Lu, Ning Li, Qing Geng
    Cellular Signalling.2024; 117: 111099.     CrossRef
  • The Influence of Soy Isoflavones and Soy Isoflavones with Inulin on Kidney Morphology, Fatty Acids, and Associated Parameters in Rats with and without Induced Diabetes Type 2
    Kamila Misiakiewicz-Has, Dominika Maciejewska-Markiewicz, Dagmara Szypulska-Koziarska, Agnieszka Kolasa, Barbara Wiszniewska
    International Journal of Molecular Sciences.2024; 25(10): 5418.     CrossRef
  • Deletion of IRE1α in podocytes exacerbates diabetic nephropathy in mice
    Andrey V. Cybulsky, Joan Papillon, Julie Guillemette, José R. Navarro-Betancourt, Chen-Fang Chung, Takao Iwawaki, I. George Fantus
    Scientific Reports.2024;[Epub]     CrossRef
  • Reduced sphingolipid biosynthesis modulates proteostasis networks to enhance longevity
    Nathaniel L. Hepowit, Eric Blalock, Sangderk Lee, Kimberly M. Bretland, Jason A. MacGurn, Robert C. Dickson
    Aging.2023; 15(2): 472.     CrossRef
  • Protective effect of natural products in the metabolic-associated kidney diseases via regulating mitochondrial dysfunction
    Peng Liu, Yao Chen, Jing Xiao, Wenhui Zhu, Xiaoming Yan, Ming Chen
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • BCAA insufficiency leads to premature ovarian insufficiency via ceramide‐induced elevation of ROS
    Xiao Guo, Yuemeng Zhu, Lu Guo, Yiwen Qi, Xiaocheng Liu, Jinhui Wang, Jiangtao Zhang, Linlin Cui, Yueyang Shi, Qichu Wang, Cenxi Liu, Guangxing Lu, Yilian Liu, Tao Li, Shangyu Hong, Yingying Qin, Xuelian Xiong, Hao Wu, Lin Huang, He Huang, Chao Gu, Bin Li,
    EMBO Molecular Medicine.2023;[Epub]     CrossRef
  • Chinese herbal medicine and its active compounds in attenuating renal injury via regulating autophagy in diabetic kidney disease
    Peng Liu, Wenhui Zhu, Yang Wang, Guijie Ma, Hailing Zhao, Ping Li
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Integrated gas chromatography‐mass spectrometry and ultra‐high‐performance liquid chromatography‐mass spectrometry renal metabolomics and lipidomics deciphered the metabolic regulation mechanism of Gushudan on kidney‐yang‐deficiency‐syndrome rats
    Qing Lu, Jing Zhang, Ling Xin, Yanwei Lou, Feng Qin, Longshan Zhao, Zhili Xiong
    Journal of Separation Science.2023;[Epub]     CrossRef
  • Advances in the pharmacological study of Chinese herbal medicine to alleviate diabetic nephropathy by improving mitochondrial oxidative stress
    Ming Chen, Yao Chen, Wenhui Zhu, Xiaoming Yan, Jing Xiao, Peiqing Zhang, Peng Liu, Ping Li
    Biomedicine & Pharmacotherapy.2023; 165: 115088.     CrossRef
  • Rodent models to study type 1 and type 2 diabetes induced human diabetic nephropathy
    Amit Talukdar, Mandira Basumatary
    Molecular Biology Reports.2023; 50(9): 7759.     CrossRef
  • Art2 mediates selective endocytosis of methionine transporters during adaptation to sphingolipid depletion
    Nathaniel L. Hepowit, Bradley Moon, Adam C. Ebert, Robert C. Dickson, Jason A. MacGurn
    Journal of Cell Science.2023;[Epub]     CrossRef
  • Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease
    Alla Mitrofanova, Sandra Merscher, Alessia Fornoni
    Nature Reviews Nephrology.2023; 19(10): 629.     CrossRef
  • Research progress of autophagy in pathogenesis of diabetes nephropathy
    Shengnan Zeng, Ying Li
    Diabetic Nephropathy.2023; 3(3): 51.     CrossRef
  • Associations of plasma sphingolipids with measures of insulin sensitivity, β-cell function, and incident diabetes in Japanese Americans
    Ji Cheol Bae, Pandora L. Wander, Rozenn N. Lemaitre, Amanda M. Fretts, Colleen M. Sitlani, Hai H. Bui, Melissa K. Thomas, Donna Leonetti, Wilfred Y. Fujimoto, Edward J. Boyko, Kristina M. Utzschneider
    Nutrition, Metabolism and Cardiovascular Diseases.2023;[Epub]     CrossRef
  • Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease
    Judy Baek, Chenchen He, Farsad Afshinnia, George Michailidis, Subramaniam Pennathur
    Nature Reviews Nephrology.2022; 18(1): 38.     CrossRef
  • Podocyte Bioenergetics in the Development of Diabetic Nephropathy: The Role of Mitochondria
    Irena Audzeyenka, Agnieszka Bierżyńska, Abigail C Lay
    Endocrinology.2022;[Epub]     CrossRef
  • Acylcarnitines: Can They Be Biomarkers of Diabetic Nephropathy?
    Xiaodie Mu, Min Yang, Peiyao Ling, Aihua Wu, Hua Zhou, Jingting Jiang
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2022; Volume 15: 247.     CrossRef
  • Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels
    Jinshan He, Sicong Li, Yumeng Ding, Yujia Tong, Xuebin Li, Simona Saponara
    Cardiovascular Therapeutics.2022; 2022: 1.     CrossRef
  • Mechanisms of podocyte injury and implications for diabetic nephropathy
    Federica Barutta, Stefania Bellini, Gabriella Gruden
    Clinical Science.2022; 136(7): 493.     CrossRef
  • A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury
    Norishi Ueda
    International Journal of Molecular Sciences.2022; 23(7): 4010.     CrossRef
  • Implications of Sphingolipid Metabolites in Kidney Diseases
    Shamroop kumar Mallela, Sandra Merscher, Alessia Fornoni
    International Journal of Molecular Sciences.2022; 23(8): 4244.     CrossRef
  • Role of ceramides in the pathogenesis of diabetes mellitus and its complications
    Nawajes Mandal, Richard Grambergs, Koushik Mondal, Sandip K. Basu, Faiza Tahia, Sam Dagogo-Jack
    Journal of Diabetes and its Complications.2021; 35(2): 107734.     CrossRef
  • Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease
    Rebekah J. Nicholson, Marcus G. Pezzolesi, Scott A. Summers
    Frontiers in Endocrinology.2021;[Epub]     CrossRef
  • Enhancing lifespan of budding yeast by pharmacological lowering of amino acid pools
    Nathaniel L. Hepowit, Jessica K. A. Macedo, Lyndsay E. A. Young, Ke Liu, Ramon C. Sun, Jason A. MacGurn, Robert C. Dickson
    Aging.2021; 13(6): 7846.     CrossRef
  • New insights into renal lipid dysmetabolism in diabetic kidney disease
    Alla Mitrofanova, George Burke, Sandra Merscher, Alessia Fornoni
    World Journal of Diabetes.2021; 12(5): 524.     CrossRef
  • Excessively Enlarged Mitochondria in the Kidneys of Diabetic Nephropathy
    Kiyoung Kim, Eun-Young Lee
    Antioxidants.2021; 10(5): 741.     CrossRef
  • Mechanistic insights into the role of serum-glucocorticoid kinase 1 in diabetic nephropathy: A systematic review
    Saba Noor, Taj Mohammad, Gulam M. Ashraf, Joviana Farhat, Anwar L. Bilgrami, Mathew Suji Eapen, Sukhwinder Singh Sohal, Dharmendra Kumar Yadav, Md Imtaiyaz Hassan
    International Journal of Biological Macromolecules.2021; 193: 562.     CrossRef
  • The Updates of Podocyte Lipid Metabolism in Proteinuric Kidney Disease
    Yu Sun, Sijia Cui, Yunfeng Hou, Fan Yi
    Kidney Diseases.2021; 7(6): 438.     CrossRef
  • Saturated fatty acids induce insulin resistance in podocytes through inhibition of IRS1 via activation of both IKKβ and mTORC1
    Benoit Denhez, Marina Rousseau, Crysta Spino, David-Alexandre Dancosst, Marie-Ève Dumas, Andréanne Guay, Farah Lizotte, Pedro Geraldes
    Scientific Reports.2020;[Epub]     CrossRef
Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy
Shinji Kume, Daisuke Koya
Diabetes Metab J. 2015;39(6):451-460.   Published online December 11, 2015
  • 5,128 View
  • 56 Download
  • 80 Web of Science
  • 76 Crossref
AbstractAbstract PDFPubReader   

Diabetic nephropathy is a leading cause of end stage renal disease and its occurance is increasing worldwide. The most effective treatment strategy for the condition is intensive treatment to strictly control glycemia and blood pressure using renin-angiotensin system inhibitors. However, a fraction of patients still go on to reach end stage renal disease even under such intensive care. New therapeutic targets for diabetic nephropathy are, therefore, urgently needed. Autophagy is a major catabolic pathway by which mammalian cells degrade macromolecules and organelles to maintain intracellular homeostasis. The accumulation of damaged proteins and organelles is associated with the pathogenesis of diabetic nephropathy. Autophagy in the kidney is activated under some stress conditions, such as oxidative stress and hypoxia in proximal tubular cells, and occurs even under normal conditions in podocytes. These and other accumulating findings have led to a hypothesis that autophagy is involved in the pathogenesis of diabetic nephropathy. Here, we review recent findings underpinning this hypothesis and discuss the advantages of targeting autophagy for the treatment of diabetic nephropathy.


Citations to this article as recorded by  
  • Aging and Diabetic Kidney Disease: Emerging Pathogenetic Mechanisms and Clinical Implications
    Yi Chen, Yashpal S. Kanwar, Xueqin Chen, Ming Zhan
    Current Medicinal Chemistry.2024; 31(6): 697.     CrossRef
  • Metformin inhibits high glucose‐induced apoptosis of renal podocyte through regulating miR‐34a/SIRT1 axis
    Xudong Zhuang, Zhuye Sun, Huasheng Du, Tianhui Zhou, Jing Zou, Wei Fu
    Immunity, Inflammation and Disease.2024;[Epub]     CrossRef
  • Placenta-derived mesenchymal stem cells protect against diabetic kidney disease by upregulating autophagy-mediated SIRT1/FOXO1 pathway
    Honghong Liu, Jiao Wang, Guanru Yue, Jixiong Xu
    Renal Failure.2024;[Epub]     CrossRef
  • Epigenetic Regulation of Autophagy in Bone Metabolism
    Yazhou Zhang, Qianqian Wang, Hongjia Xue, Yujin Guo, Shanshan Wei, Fengfeng Li, Linqiang Gong, Weiliang Pan, Pei Jiang
    Function.2024;[Epub]     CrossRef
  • The interaction between lncRNAs and transcription factors regulating autophagy in human cancers: A comprehensive and therapeutical survey
    Saade Abdalkareem Jasim, Yasir Qasim Almajidi, Reyadh R. Al‐Rashidi, Ahmed Hjazi, Irfan Ahmad, Ahmed Hussien Radie Alawadi, Enas R. Alwaily, Hashem O. Alsaab, Ali Haslany, Mohamood Hameed
    Cell Biochemistry and Function.2024;[Epub]     CrossRef
  • Nephro‐protective effects of alpha‐lipoic acid in type I diabetes
    Kriti Kushwaha, Debojyoti Mandal, Navneet Khurana, Jeena Gupta
    Journal of Biochemical and Molecular Toxicology.2024;[Epub]     CrossRef
  • Astragalus polysaccharide attenuates diabetic nephropathy by reducing apoptosis and enhancing autophagy through activation of Sirt1/FoxO1 pathway
    Yanmei Xu, Chen Xu, Jie Huang, Chuanwen Xu, Yan Xiong
    International Urology and Nephrology.2024;[Epub]     CrossRef
  • Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy
    Fengzhao Liu, Lijuan Zhao, Tao Wu, Wenfei Yu, Jixin Li, Wenru Wang, Chengcheng Huang, Zhihao Diao, Yunsheng Xu
    Frontiers in Pharmacology.2024;[Epub]     CrossRef
  • The beneficial effects of astragaloside IV on ameliorating diabetic kidney disease
    Yiwei Gao, Xin Su, Taiqi Xue, Ning Zhang
    Biomedicine & Pharmacotherapy.2023; 163: 114598.     CrossRef
    Offir Ertracht, Raneen Saad, Hagar Tadmor, Farid Nakhoul, Nakhoul Nakhoul
    Nephrology Dialysis Transplantation.2023;[Epub]     CrossRef
  • Role of oxidative stress in diabetes-induced complications and their management with antioxidants
    Hasandeep Singh, Rajanpreet Singh, Arshdeep Singh, Harshbir Singh, Gurpreet Singh, Sarabjit Kaur, Balbir Singh
    Archives of Physiology and Biochemistry.2023; : 1.     CrossRef
  • Stress can affect mitochondrial energy metabolism and AMPK/SIRT1 signaling pathway in rats
    An-ran Zhao, Jie Li, Si-qi Wang, Li-hua Bian, Wen-jing Li, Jian-you Guo
    Brain Research Bulletin.2023; 203: 110770.     CrossRef
  • Emerging links between FOXOs and diabetic complications
    Urvi M. Parmar, Manjiri P. Jalgaonkar, Aayush J. Kansara, Manisha J. Oza
    European Journal of Pharmacology.2023; 960: 176089.     CrossRef
  • Pathophysiology of diabetic kidney disease and autophagy: A review
    Jiawei Yu, Yan Liu, Hongjie Li, Peirong Zhang
    Medicine.2023; 102(30): e33965.     CrossRef
  • Microcystin-LR-induced autophagy via miR-282–5p/PIK3R1 pathway in Eriocheir sinensis hepatopancreas
    Yuning Zhang, Jiancao Gao, Liping Cao, Jinliang Du, Gangchun Xu, Pao Xu
    Ecotoxicology and Environmental Safety.2023; 267: 115661.     CrossRef
  • Global research trends and hot spots on autophagy and kidney diseases: a bibliometric analysis from 2000 to 2022
    Sinan Ai, Yake Li, Huijuan Zheng, Zhen Wang, Weijing Liu, JiaYin Tao, Yaotan Li, Yaoxian Wang
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • Administration of mesenchymal stem cells in diabetic kidney disease: mechanisms, signaling pathways, and preclinical evidence
    Yuexin Zhu, Manyu Luo, Xue Bai, Yan Lou, Ping Nie, Shan Jiang, Jicui Li, Bing Li, Ping Luo
    Molecular and Cellular Biochemistry.2022; 477(8): 2073.     CrossRef
  • Dictyophora Polysaccharide Attenuates As-Mediated PINK1/Parkin Pathway-Induced Mitophagy in L-02 Cell through Scavenging ROS
    Ting Hu, Ju Lu, Changyan Wu, Tianxiao Duan, Peng Luo
    Molecules.2022; 27(9): 2806.     CrossRef
  • Asiatic acid from Cyclocarya paliurus regulates the autophagy–lysosome system via directly inhibiting TGF-β type I receptor and ameliorates diabetic nephropathy fibrosis
    Xuan-xuan Zhang, Yao Liu, Su-su Xu, Ru Yang, Cui-hua Jiang, Li-ping Zhu, Yin-ying Xu, Ke Pan, Jian Zhang, Zhi-qi Yin
    Food & Function.2022; 13(10): 5536.     CrossRef
  • Therapeutic Potential of Resveratrol in Diabetic Nephropathy According to Molecular Signaling
    Marziyeh Salami, Raziyeh Salami, Alireza Mafi, Mohammad-Hossein Aarabi, Omid Vakili, Zatollah Asemi
    Current Molecular Pharmacology.2022; 15(5): 716.     CrossRef
  • Impact of SGLT2 inhibitors on the kidney in people with type 2 diabetes and severely increased albuminuria
    Nasir Shah, Vlado Perkovic, Sradha Kotwal
    Expert Review of Clinical Pharmacology.2022; 15(7): 827.     CrossRef
  • Autophagy-nutrient sensing pathways in diabetic complications
    Urvi M. Parmar, Manjiri P. Jalgaonkar, Yogesh A. Kulkarni, Manisha J. Oza
    Pharmacological Research.2022; 184: 106408.     CrossRef
  • The Molecular Effects of SGLT2i Empagliflozin on the Autophagy Pathway in Diabetes Mellitus Type 2 and Its Complications
    Ranin Saad, Hagar Tadmor, Offir Ertracht, Nakhoul Nakhoul, Farid Nakhoul, Farber Evgeny, Shaul Atar, Bernd Stratmann
    Journal of Diabetes Research.2022; 2022: 1.     CrossRef
  • What’s New in the Molecular Mechanisms of Diabetic Kidney Disease: Recent Advances
    Kimio Watanabe, Emiko Sato, Eikan Mishima, Mariko Miyazaki, Tetsuhiro Tanaka
    International Journal of Molecular Sciences.2022; 24(1): 570.     CrossRef
  • Autophagy blockade mechanistically links proton pump inhibitors to worsened diabetic nephropathy and aborts the renoprotection of metformin/enalapril
    Dalia Kamal Mostafa, Mohamed Mostafa Khedr, Mervat Kamel Barakat, Amany Abdelbary Abdellatif, Amal Mohamed Elsharkawy
    Life Sciences.2021; 265: 118818.     CrossRef
  • Epigenetic Modulation of Autophagy Genes Linked to Diabetic Nephropathy by Administration of Isorhamnetin in Type 2 Diabetes Mellitus Rats
    Marwa Matboli, Doaa Ibrahim, Amany H Hasanin, Mohamed K Hassan, Eman K Habib, Miram M Bekhet, Ahmed M Afifi, Sanaa Eissa
    Epigenomics.2021; 13(3): 187.     CrossRef
  • Yishen capsule promotes podocyte autophagy through regulating SIRT1/NF-κB signaling pathway to improve diabetic nephropathy
    Yuxiang Liu, Wenyuan Liu, Ziyuan Zhang, Yaling Hu, Xiaodong Zhang, Yanyan Sun, Qingqing Lei, Dalin Sun, Ting Liu, Yanjun Fan, Hui Li, Wujie Ding, Jingai Fang
    Renal Failure.2021; 43(1): 128.     CrossRef
  • Geniposide Improves Diabetic Nephropathy by Enhancing ULK1-Mediated Autophagy and Reducing Oxidative Stress through AMPK Activation
    Theodomir Dusabimana, Eun Jung Park, Jihyun Je, Kyuho Jeong, Seung Pil Yun, Hye Jung Kim, Hwajin Kim, Sang Won Park
    International Journal of Molecular Sciences.2021; 22(4): 1651.     CrossRef
  • Update on diagnosis, pathophysiology, and management of diabetic kidney disease
    Mai Sugahara, Wai Lun Will Pak, Tetsuhiro Tanaka, Sydney C. W. Tang, Masaomi Nangaku
    Nephrology.2021; 26(6): 491.     CrossRef
  • Life-Long Hyperbilirubinemia Exposure and Bilirubin Priming Prevent In Vitro Metabolic Damage
    Annalisa Bianco, Serena Pinci, Claudio Tiribelli, Cristina Bellarosa
    Frontiers in Pharmacology.2021;[Epub]     CrossRef
  • NADH/NAD+ Redox Imbalance and Diabetic Kidney Disease
    Liang-Jun Yan
    Biomolecules.2021; 11(5): 730.     CrossRef
  • Circular RNAs act as regulators of autophagy in cancer
    Zhixia Zhou, Yinfeng Zhang, Jinning Gao, Xiaodan Hao, Chan Shan, Jing Li, Cuiyun Liu, Yin Wang, Peifeng Li
    Molecular Therapy - Oncolytics.2021; 21: 242.     CrossRef
  • Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway
    Xi-zhi Li, Hong Jiang, Liu Xu, Yi-qi Liu, Jia-wei Tang, Jia-sen Shi, Xiu-juan Yu, Xue Wang, Lei Du, Qian Lu, Cheng-lin Li, Yao-wu Liu, Xiao-xing Yin
    Biochemical Pharmacology.2021; 192: 114675.     CrossRef
  • Dietary Restriction for Kidney Protection: Decline in Nephroprotective Mechanisms During Aging
    Nadezda V. Andrianova, Marina I. Buyan, Anastasia K. Bolikhova, Dmitry B. Zorov, Egor Y. Plotnikov
    Frontiers in Physiology.2021;[Epub]     CrossRef
  • Induction of PDCD4 by albumin in proximal tubule epithelial cells potentiates proteinuria-induced dysfunctional autophagy by negatively targeting Atg5
    Ezra Kombo Osoro, Xiaojuan Du, Dong Liang, Xi Lan, Riaz Farooq, Fumeng Huang, Wenhua Zhu, Jiajun Ren, Muhammad Sadiq, Lifang Tian, Xudong Yang, Dongmin Li, Shemin Lu
    Biochemistry and Cell Biology.2021; 99(5): 617.     CrossRef
  • Overexpressing STAMP2 attenuates diabetic renal injuries via upregulating autophagy in diabetic rats
    Fang-qiang Song, Ming Song, Wei-xuan Ma, Zhan Gao, Yun Ti, Xu Zhang, Bo-ang Hu, Ming Zhong, Wei Zhang, Ying Yu
    Biochemical and Biophysical Research Communications.2021; 579: 47.     CrossRef
  • Mitochondrial Regulation of Diabetic Kidney Disease
    Daniel L. Galvan, Koki Mise, Farhad R. Danesh
    Frontiers in Medicine.2021;[Epub]     CrossRef
  • Diabetic kidney disease update: Pathogenesis and treatment overview for clinicians
    Elmukhtar Habas, Abdel-Naser Elzouki
    Journal of Diabetes and Endocrine Practice.2021; 04(03): 107.     CrossRef
  • VDR/Atg3 Axis Regulates Slit Diaphragm to Tight Junction Transition via p62-Mediated Autophagy Pathway in Diabetic Nephropathy
    Bin Wang, Jing-yi Qian, Tao-tao Tang, Li-lu Lin, Nan Yu, Hong-lei Guo, Wei-jie Ni, Ling-Li Lv, Yi Wen, Zuo-Lin Li, Min Wu, Jing-Yuan Cao, Bi-Cheng Liu
    Diabetes.2021; 70(11): 2639.     CrossRef
  • SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy
    Jing Ji, Pengyu Tao, Qian Wang, Lingxing Li, Yuzhen Xu
    Endocrine, Metabolic & Immune Disorders - Drug Targets.2021; 21(5): 835.     CrossRef
  • SIRT1 Alleviates Aldosterone-Induced Podocyte Injury by Suppressing Mitochondrial Dysfunction and NLRP3 Inflammasome Activation
    Mingzhu Jiang, Min Zhao, Mi Bai, Juan Lei, Yanggang Yuan, Songming Huang, Yue Zhang, Guixia Ding, Zhanjun Jia, Aihua Zhang
    Kidney Diseases.2021; 7(4): 293.     CrossRef
  • Salvianolic Acid B Improves Chronic Mild Stress-Induced Depressive Behaviors in Rats: Involvement of AMPK/SIRT1 Signaling Pathway

    Dehua Liao, Yun Chen, Yujin Guo, Changshui Wang, Ni Liu, Qian Gong, Yingzhou Fu, Yilan Fu, Lizhi Cao, Dunwu Yao, Pei Jiang
    Journal of Inflammation Research.2020; Volume 13: 195.     CrossRef
  • Long non-coding RNAs and pyroptosis
    Dong He, Jun Zheng, Jia Hu, Juan Chen, Xing Wei
    Clinica Chimica Acta.2020; 504: 201.     CrossRef
  • Resveratrol ameliorates renal damage by inhibiting oxidative stress-mediated apoptosis of podocytes in diabetic nephropathy
    Fang Wang, Ran Li, Linlin Zhao, Shuang Ma, Guijun Qin
    European Journal of Pharmacology.2020; 885: 173387.     CrossRef
  • Beneficial Effect of Chloroquine and Amodiaquine on Type 1 Diabetic Tubulopathy by Attenuating Mitochondrial Nox4 and Endoplasmic Reticulum Stress
    Jun Mo Kang, Hyun-Seob Lee, Junghyun Kim, Dong Ho Yang, Hye Yun Jeong, Yu Ho Lee, Dong-Jin Kim, Seon Hwa Park, MinJi Sung, Jaehee Kim, Hyun-Ju An, Sang Ho Lee, So-Young Lee
    Journal of Korean Medical Science.2020;[Epub]     CrossRef
  • Glucagon-like peptide-1 alleviates diabetic kidney disease through activation of autophagy by regulating AMP-activated protein kinase-mammalian target of rapamycin pathway
    Shuangli Yang, Chuman Lin, Xiaoyun Zhuo, Jiyu Wang, Shitao Rao, Wen Xu, Yanzhen Cheng, Li Yang
    American Journal of Physiology-Endocrinology and Metabolism.2020; 319(6): E1019.     CrossRef
  • Inhibition of soluble epoxide hydrolase attenuates renal tubular mitochondrial dysfunction and ER stress by restoring autophagic flux in diabetic nephropathy
    Xu-shun Jiang, Xing-yang Xiang, Xue-mei Chen, Jun-ling He, Ting Liu, Hua Gan, Xiao-gang Du
    Cell Death & Disease.2020;[Epub]     CrossRef
  • Orientin Protects Podocytes from High Glucose Induced Apoptosis through Mitophagy
    Zi‐Li Kong, Kui Che, Jian‐Xia Hu, Ying Chen, Yun‐Yang Wang, Xiang Wang, Wen‐Shan Lü, Yan‐Gang Wang, Jing‐Wei Chi
    Chemistry & Biodiversity.2020;[Epub]     CrossRef
  • Sex-Specific Metabolic Changes in Peripheral Organs of Diabetic Mice
    Xi Zhang, Hangying Xu, Jie Ning, Hui Ji, Junjie Yan, Yafei Zheng, Qingqing Xu, Chen Li, Liangcai Zhao, Hong Zheng, Hongchang Gao
    Journal of Proteome Research.2020; 19(8): 3011.     CrossRef
  • Liver X receptor activation induces podocyte injury via inhibiting autophagic activity
    Ziyi Zhang, Shengjie Tang, Weiwei Gui, Xihua Lin, Fenping Zheng, Fang Wu, Hong Li
    Journal of Physiology and Biochemistry.2020; 76(2): 317.     CrossRef
  • Autophagy plays a protective role duringPseudomonas aeruginosa-induced apoptosis via ROS–MAPK pathway
    Lu Han, Qinmei Ma, Jialin Yu, Zhaoqian Gong, Chenjie Ma, Yanan Xu, Guangcun Deng, Xiaoling Wu
    Innate Immunity.2020; 26(7): 580.     CrossRef
  • Autophagy in diabetic nephropathy: a review
    Elias A. T. Koch, Rola Nakhoul, Farid Nakhoul, Nakhoul Nakhoul
    International Urology and Nephrology.2020; 52(9): 1705.     CrossRef
  • P2Y2R contributes to the development of diabetic nephropathy by inhibiting autophagy response
    Theodomir Dusabimana, So Ra Kim, Eun Jung Park, Jihyun Je, Kyuho Jeong, Seung Pil Yun, Hye Jung Kim, Hwajin Kim, Sang Won Park
    Molecular Metabolism.2020; 42: 101089.     CrossRef
  • Cardioprotective Effects of Taurisolo® in Cardiomyoblast H9c2 Cells under High-Glucose and Trimethylamine N-Oxide Treatment via De Novo Sphingolipid Synthesis
    Stefania Lama, Vincenzo Monda, Maria Rosaria Rizzo, Marco Dacrema, Maria Maisto, Giuseppe Annunziata, Gian Carlo Tenore, Ettore Novellino, Paola Stiuso, Laura Sartiani
    Oxidative Medicine and Cellular Longevity.2020; 2020: 1.     CrossRef
  • Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy
    Yu Ho Lee, Sang Hoon Kim, Jun Mo Kang, Jin Hyung Heo, Dong-Jin Kim, Seon Hwa Park, MinJi Sung, Jaehee Kim, Jisu Oh, Dong Ho Yang, Sang Ho Lee, So-Young Lee
    American Journal of Physiology-Renal Physiology.2019; 317(4): F767.     CrossRef
  • Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy
    Sugandh Saxena, Alpana Mathur, Poonam Kakkar
    Journal of Cellular Physiology.2019; 234(11): 19223.     CrossRef
  • High Dose Vitamin E Attenuates Diabetic Nephropathy via Alleviation of Autophagic Stress
    Yuxue Zhao, Wenting Zhang, Qi Jia, Zhendong Feng, Jing Guo, Xueting Han, Yuning Liu, Hongcai Shang, Yaoxian Wang, Wei Jing Liu
    Frontiers in Physiology.2019;[Epub]     CrossRef
  • Caffeic Acid Modulates miR-636 Expression in Diabetic Nephropathy Rats
    Ahmed M. Salem, Aya S. Ragheb, Marwa G. A. Hegazy, Marwa Matboli, Sanaa Eissa
    Indian Journal of Clinical Biochemistry.2019; 34(3): 296.     CrossRef
  • Mechanistic Understanding of the Engineered Nanomaterial-Induced Toxicity on Kidney
    Haiyang Zhao, Luxin Li, Huilu Zhan, Yanhui Chu, Bingbing Sun
    Journal of Nanomaterials.2019; 2019: 1.     CrossRef
  • Diabetic nephropathy: An update on pathogenesis and drug development
    Vikram Rao A/L B Vasanth Rao, Sean Hong Tan, Mayuren Candasamy, Subrat Kumar Bhattamisra
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2019; 13(1): 754.     CrossRef
  • Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway
    Qian Yu, Minda Zhang, Lifen Qian, Dan Wen, Guanzhong Wu
    Life Sciences.2019; 225: 1.     CrossRef
  • Catalpol Ameliorates Podocyte Injury by Stabilizing Cytoskeleton and Enhancing Autophagy in Diabetic Nephropathy
    Yan Chen, Qingpu Liu, Zengfu Shan, Wangyang Mi, Yingying Zhao, Meng Li, Baiyan Wang, Xiaoke Zheng, Weisheng Feng
    Frontiers in Pharmacology.2019;[Epub]     CrossRef
  • Role of sirtuin-1 in diabetic nephropathy
    Wanning Wang, Weixia Sun, Yanli Cheng, Zhonggao Xu, Lu Cai
    Journal of Molecular Medicine.2019; 97(3): 291.     CrossRef
  • Energy restriction in renal protection
    Si-Yang Wang, Guang-Yan Cai, Xiang-Mei Chen
    British Journal of Nutrition.2018; 120(10): 1149.     CrossRef
  • The dysregulated autophagy signaling is partially responsible for defective podocyte development in wt1a mutant zebrafish
    Xuemei Zhang, Qiaohong Lin, Fan Ren, Jin Zhang, Farman Ullah Dawar, Jie Mei
    Aquaculture and Fisheries.2018; 3(3): 99.     CrossRef
  • Supplementation of Abelmoschus manihot Ameliorates Diabetic Nephropathy and Hepatic Steatosis by Activating Autophagy in Mice
    Hwajin Kim, Theodomir Dusabimana, So Kim, Jihyun Je, Kyuho Jeong, Min Kang, Kye Cho, Hye Kim, Sang Park
    Nutrients.2018; 10(11): 1703.     CrossRef
  • Acute Kidney Injury and Progression of Diabetic Kidney Disease
    Samuel Mon-Wei Yu, Joseph V. Bonventre
    Advances in Chronic Kidney Disease.2018; 25(2): 166.     CrossRef
  • Cardioprotective effects of dietary rapamycin on adult female C57BLKS/J‐Leprdb mice
    Peter C. Reifsnyder, Sergey Ryzhov, Kevin Flurkey, Rea P. Anunciado‐Koza, Ian Mills, David E. Harrison, Robert A. Koza
    Annals of the New York Academy of Sciences.2018; 1418(1): 106.     CrossRef
  • Viability of primary cultured podocytes is associated with extracellular high glucose-dependent autophagy downregulation
    Irena Audzeyenka, Dorota Rogacka, Agnieszka Piwkowska, Stefan Angielski, Maciej Jankowski
    Molecular and Cellular Biochemistry.2017; 430(1-2): 11.     CrossRef
  • Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro
    Xu-shun Jiang, Xue-mei Chen, Jiang-min Wan, Hai-bo Gui, Xiong-zhong Ruan, Xiao-gang Du
    Scientific Reports.2017;[Epub]     CrossRef
  • Apelin involved in progression of diabetic nephropathy by inhibiting autophagy in podocytes
    Yu Liu, Jia Zhang, Yangjia Wang, Xiangjun Zeng
    Cell Death & Disease.2017; 8(8): e3006.     CrossRef
  • Autophagy and its link to type II diabetes mellitus
    Jai-Sing Yang, Chi-Cheng Lu, Sheng-Chu Kuo, Yuan-Man Hsu, Shih-Chang Tsai, Shih-Yin Chen, Yng-Tay Chen, Ying-Ju Lin, Yu-Chuen Huang, Chao-Jung Chen, Wei-De Lin, Wen-Lin Liao, Wei-Yong Lin, Yu-Huei Liu, Jinn-Chyuan Sheu, Fuu-Jen Tsai
    BioMedicine.2017; 7(2): 8.     CrossRef
  • Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy
    Shan-Shan Huang, Da-Fa Ding, Sheng Chen, Cheng-Long Dong, Xiao-Long Ye, Yang-Gang Yuan, Ya-Min Feng, Na You, Jia-Rong Xu, Heng Miao, Qiang You, Xiang Lu, Yi-Bing Lu
    Scientific Reports.2017;[Epub]     CrossRef
  • Long non-coding RNAs involved in autophagy regulation
    Lixian Yang, Hanying Wang, Qi Shen, Lifeng Feng, Hongchuan Jin
    Cell Death & Disease.2017; 8(10): e3073.     CrossRef
  • Treatment of diabetic kidney disease: current and future targets
    Mi-Kyung Kim
    The Korean Journal of Internal Medicine.2017; 32(4): 622.     CrossRef
  • MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice
    Yanru Zhao, Zhongwei Yin, Huaping Li, Jiahui Fan, Shenglan Yang, Chen Chen, Dao Wen Wang
    Aging Cell.2017; 16(2): 387.     CrossRef
The Role of Glomerular Podocytes in Diabetic Nephropathy.
Eun Young Lee, Choon Hee Chung
Korean Diabetes J. 2007;31(6):451-454.   Published online November 1, 2007
  • 2,258 View
  • 19 Download
  • 3 Crossref
AbstractAbstract PDF
Diabetic nephropathy is the most common cause of end-stage renal disease and accounts for significant morbidity and mortality among individuals with diabetes mellitus. Therefore, the clarification of the pathogenesis of diabetic nephropathy is an urgent issue. Podocytes cover the outer layer of the glomerulus and maintain its integrity so that fluid and toxins exit in urine, but cells and important proteins are kept in the blood stream. Diabetes mellitus alters this structure, it becomes scarred and then the ability of the kidney to clear toxins is lost. Recent evidence shows that early in diabetes the podocyte number is reduced, areas of the glomerular basement membrane are denuded, and podocyte number predicts long-term urinary albumin excretion in the patients with diabetes and microalbuminuria. These results suggest that podocytes play a critical role in the early stage of diabetic nephropathy. It is the purpose of this article to review the pathogenetic role of podocytes in diabetic nephropathy.


Citations to this article as recorded by  
  • Inhibition of dipeptidyl peptidase-4 (DPP4), antioxidant, antiglycation and anti-inflammatory effect of Ferulic acid against streptozotocin toxicity mediate nephropathy in diabetic rats
    Maryam A. AL-Ghamdi, Said S. Moselhy
    Environmental Science and Pollution Research.2022; 30(12): 33942.     CrossRef
  • Study of Antiglycation, Hypoglycemic, and Nephroprotective Activities of the Green Dwarf Variety Coconut Water (Cocos nucifera L.) in Alloxan-Induced Diabetic Rats
    Isabella F.D. Pinto, Railmara P. Silva, Adriano de B. Chaves Filho, Lucas S. Dantas, Vanderson S. Bispo, Isaac A. Matos, Felipe A.M. Otsuka, Aline C. Santos, Humberto Reis Matos
    Journal of Medicinal Food.2015; 18(7): 802.     CrossRef
  • Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes
    Ran Choi, Bo Hwan Kim, Jarinyaporn Naowaboot, Mi Young Lee, Mi Ri Hyun, Eun Ju Cho, Eun Soo Lee, Eun Young Lee, Young Chul Yang, Choon Hee Chung
    Experimental and Molecular Medicine.2011; 43(12): 676.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer