Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
2 "Glucose transporter type 4"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Articles
Basic Research
Article image
Vimentin Deficiency Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice
SeoYeon Kim, Inyeong Kim, Wonkyoung Cho, Goo Taeg Oh, Young Mi Park
Diabetes Metab J. 2021;45(1):97-108.   Published online June 15, 2020
DOI: https://doi.org/10.4093/dmj.2019.0198
  • 8,421 View
  • 245 Download
  • 19 Web of Science
  • 19 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background

Obesity and type 2 diabetes mellitus are world-wide health problems, and lack of understanding of their linking mechanism is one reason for limited treatment options. We determined if genetic deletion of vimentin, a type 3 intermediate filament, affects obesity and type 2 diabetes mellitus.

Methods

We fed vimentin-null (Vim−/−) mice and wild-type mice a high-fat diet (HFD) for 10 weeks and measured weight change, adiposity, blood lipids, and glucose. We performed intraperitoneal glucose tolerance tests and measured CD36, a major fatty acid translocase, and glucose transporter type 4 (GLUT4) in adipocytes from both groups of mice.

Results

Vim−/− mice fed an HFD showed less weight gain, less adiposity, improved glucose tolerance, and lower serum level of fasting glucose. However, serum triglyceride and non-esterified fatty acid levels were higher in Vim−/− mice than in wild-type mice. Vimentin-null adipocytes showed 41.1% less CD36 on plasma membranes, 27% less uptake of fatty acids, and 50.3% less GLUT4, suggesting defects in intracellular trafficking of these molecules.

Conclusion

We concluded that vimentin deficiency prevents obesity and insulin resistance in mice fed an HFD and suggest vimentin as a central mediator linking obesity and type 2 diabetes mellitus.

Citations

Citations to this article as recorded by  
  • Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy
    Ji-Hae Park, Soyeon Kwon, Young Mi Park
    Diabetes & Metabolism Journal.2024; 48(2): 215.     CrossRef
  • Neutrophils display distinct post-translational modifications in response to varied pathological stimuli
    Pooja Yedehalli Thimmappa, Aswathy S Nair, Sian D'silva, Anjana Aravind, Sandeep Mallya, Sreelakshmi Pathappillil Soman, Kanive Parashiva Guruprasad, Shamee Shastry, Rajesh Raju, Thottethodi Subrahmanya Keshava Prasad, Manjunath B Joshi
    International Immunopharmacology.2024; 132: 111950.     CrossRef
  • A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle
    Alba Rodriguez-Muñoz, Hanieh Motahari-Rad, Laura Martin-Chaves, Javier Benitez-Porres, Jorge Rodriguez-Capitan, Andrés Gonzalez-Jimenez, Maria Insenser, Francisco J. Tinahones, Mora Murri
    Current Obesity Reports.2024; 13(3): 403.     CrossRef
  • Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity
    Emily L. Rudolph, LiKang Chin
    Current Issues in Molecular Biology.2024; 46(7): 7134.     CrossRef
  • Extracellular Vesicles as Carriers of Adipokines and Their Role in Obesity
    Tamara Camino, Nerea Lago-Baameiro, María Pardo
    Biomedicines.2023; 11(2): 422.     CrossRef
  • Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity
    Prashanth Ganekal, Basavaraj Vastrad, Satish Kavatagimath, Chanabasayya Vastrad, Shivakumar Kotrashetti
    Medicina.2023; 59(2): 309.     CrossRef
  • Modified Signaling of Membrane Formyl Peptide Receptors in NADPH-Oxidase Regulation in Obesity-Resistant Mice
    Irina Tikhonova, Alsu Dyukina, Elvira Shaykhutdinova, Valentina Safronova
    Membranes.2023; 13(3): 306.     CrossRef
  • Plasma Cytokeratin-18 Fragment Level Reflects the Metabolic Phenotype in Obesity
    Joanna Goralska, Urszula Razny, Anna Gruca, Anna Zdzienicka, Agnieszka Micek, Aldona Dembinska-Kiec, Bogdan Solnica, Malgorzata Malczewska-Malec
    Biomolecules.2023; 13(4): 675.     CrossRef
  • Blueberry and Blackberry Anthocyanins Ameliorate Metabolic Syndrome by Modulating Gut Microbiota and Short-Chain Fatty Acids Metabolism in High-Fat Diet-Fed C57BL/6J Mice
    Lanlan Du, Han Lü, Yan Chen, Xiaohua Yu, Tunyu Jian, Huifang Zhao, Wenlong Wu, Xiaoqin Ding, Jian Chen, Weilin Li
    Journal of Agricultural and Food Chemistry.2023; 71(40): 14649.     CrossRef
  • An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis
    Sara KM Jörgensen, Alena Karnošová, Simone Mazzaferro, Oliver Rowley, Hsiao-Jou Cortina Chen, Sarah J Robbins, Sarah Christofides, Florian T Merkle, Lenka Maletínská, David Petrik
    EMBO Reports.2023; 25(1): 351.     CrossRef
  • Cytoskeleton alterations in non-alcoholic fatty liver disease
    João Pessoa, José Teixeira
    Metabolism.2022; 128: 155115.     CrossRef
  • Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle?
    Marta Wolosowicz, Slawomir Prokopiuk, Tomasz W. Kaminski
    Medicina.2022; 58(4): 472.     CrossRef
  • Roles of vimentin in health and disease
    Karen M. Ridge, John E. Eriksson, Milos Pekny, Robert D. Goldman
    Genes & Development.2022; 36(7-8): 391.     CrossRef
  • Plasma Membrane Localization of CD36 Requires Vimentin Phosphorylation; A Mechanism by Which Macrophage Vimentin Promotes Atherosclerosis
    Seo Yeon Kim, Se-Jin Jeong, Ji-Hae Park, Wonkyoung Cho, Young-Ho Ahn, Youn-Hee Choi, Goo Taeg Oh, Roy L. Silverstein, Young Mi Park
    Frontiers in Cardiovascular Medicine.2022;[Epub]     CrossRef
  • Camel Proteins and Enzymes: A Growing Resource for Functional Evolution and Environmental Adaptation
    Mahmoud Kandeel, Abdulla Al-Taher, Katharigatta N. Venugopala, Mohamed Marzok, Mohamed Morsy, Sreeharsha Nagaraja
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Brown Adipose Tissue Sheds Extracellular Vesicles That Carry Potential Biomarkers of Metabolic and Thermogenesis Activity Which Are Affected by High Fat Diet Intervention
    Tamara Camino, Nerea Lago-Baameiro, Aurelio Sueiro, Susana Belén Bravo, Iván Couto, Francisco Fernando Santos, Javier Baltar, Felipe F. Casanueva, María Pardo
    International Journal of Molecular Sciences.2022; 23(18): 10826.     CrossRef
  • Dietary tea seed saponin combined with aerobic exercise attenuated lipid metabolism and oxidative stress in mice fed a high‐fat diet (HFD)
    Wenjing Cao, Keying Wang, Chanhua Liang, Yanming Su, Shuang Liu, Jiali Li, Huishan Qing, Zhen Zeng, Ling Dai, Jia‐Le Song
    Journal of Food Biochemistry.2022;[Epub]     CrossRef
  • Influence of Protein Carbonylation on Human Adipose Tissue Dysfunction in Obesity and Insulin Resistance
    M. Carmen Navarro-Ruiz, M. Carmen Soler-Vázquez, Alberto Díaz-Ruiz, Juan R. Peinado, Andrea Nieto Calonge, Julia Sánchez-Ceinos, Carmen Tercero-Alcázar, Jaime López-Alcalá, Oriol A. Rangel-Zuñiga, Antonio Membrives, José López-Miranda, María M. Malagón, R
    Biomedicines.2022; 10(12): 3032.     CrossRef
  • The Role of Adipose Tissue Lipolysis in Diet-Induced Obesity: Focus on Vimentin
    Eun Roh, Hye Jin Yoo
    Diabetes & Metabolism Journal.2021; 45(1): 43.     CrossRef
Effects of Endurance Exercise and High-Fat Diet on Insulin Resistance and Ceramide Contents of Skeletal Muscle in Sprague-Dawley Rats
Hyun Lyung Jung, Ho Youl Kang
Korean Diabetes J. 2010;34(4):244-252.   Published online August 31, 2010
DOI: https://doi.org/10.4093/kdj.2010.34.4.244
  • 3,729 View
  • 30 Download
  • 9 Crossref
AbstractAbstract PDFPubReader   
Background

We evaluated the effects of endurance exercise and a high-fat diet on insulin resistance and ceramide contents of skeletal muscle in Sprague-Dawley rats.

Methods

We randomly divided 32 rats into four groups: control (CON, n = 8), high fat diet (HF, n = 8), exercise (Ex, 24 m/min for 2 hours, 5 days/wk, n = 8), HF/Ex (n = 8). After 4-week treatments, plasma lipid profiles, glucose and insulin concentrations were measured. The triglycerides (TG), ceramide, and glucose transporter 4 (GLUT-4) contents were measured in the skeletal muscle. The rate of glucose transport was determined under submaximal insulin concentration during the muscle incubation.

Results

Free fatty acid levels were significantly higher in CON and HF than Ex (P = 0.032). Plasma glucose levels in HF were significantly higher than the two Ex groups (P = 0.002), and insulin levels were significantly higher in HF than in other three groups (P = 0.021). Muscular TG concentrations were significantly higher in HF than CON and Ex and also in HF/Ex than Ex, respectively (P = 0.005). Hepatic TG concentrations were significantly higher in HF than other three groups but Ex was significantly lower than HF/Ex (P = 0.000). Muscular ceramide content in HF was significantly greater than that in either Ex or HF/Ex (P = 0.031). GLUT-4 levels in CON and HF were significantly lower than those in Ex and HF/Ex (P = 0.009, P = 0.003). The glucose transport rate in submaximal insulin concentration was lower in CON than in either Ex or HF/Ex (P = 0.043), but not different from HF.

Conclusion

This study suggests that high fat diet for 4 weeks selectively impairs insulin resistance, but not glucose transport rate, GLUT-4 and ceramide content in skeletal muscle per se. However, endurance exercise markedly affects the content of ceramide and insulin resistance in muscle.

Citations

Citations to this article as recorded by  
  • Early warning for inactive ovaries based on liver function index, serum MDA, IL-6, FGF21 and ANGPTL8 in dairy cows
    Zhijie Wang, Yuxi Song, Feng Zhang, Chang Zhao, Shixin Fu, Cheng Xia, Yunlong Bai
    Italian Journal of Animal Science.2022; 21(1): 113.     CrossRef
  • Metabolic Syndrome is Associated with Ceramide Accumulation in Visceral Adipose Tissue of Women with Morbid Obesity
    Barbara Choromańska, Piotr Myśliwiec, Hady Razak Hady, Jacek Dadan, Hanna Myśliwiec, Adrian Chabowski, Agnieszka Mikłosz
    Obesity.2019; 27(3): 444.     CrossRef
  • Changes in Membrane Ceramide Pools in Rat Soleus Muscle in Response to Short-Term Disuse
    Alexey M. Petrov, Maria N. Shalagina, Vladimir A. Protopopov, Valeriy G. Sergeev, Sergey V. Ovechkin, Natalia G. Ovchinina, Alexey V. Sekunov, Andrey L. Zefirov, Guzalia F. Zakirjanova, Irina G. Bryndina
    International Journal of Molecular Sciences.2019; 20(19): 4860.     CrossRef
  • Lipids in psychiatric disorders and preventive medicine
    Miriam Schneider, Beth Levant, Martin Reichel, Erich Gulbins, Johannes Kornhuber, Christian P. Müller
    Neuroscience & Biobehavioral Reviews.2017; 76: 336.     CrossRef
  • A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats
    Charles Coudray, Gilles Fouret, Karen Lambert, Carla Ferreri, Jennifer Rieusset, Agnieszka Blachnio-Zabielska, Jérôme Lecomte, Raymond Ebabe Elle, Eric Badia, Michael P. Murphy, Christine Feillet-Coudray
    British Journal of Nutrition.2016; 115(7): 1155.     CrossRef
  • The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise
    Emily Dunford, Michael Riddell
    Metabolites.2016; 6(4): 44.     CrossRef
  • Effects of Exercise Intensity on PGC-1α, PPAR-γ, and Insulin Resistance in Skeletal Muscle of High Fat Diet-fed Sprague-Dawley Rats
    Hyun-Lyung Jung, Ho-Youl Kang
    Journal of the Korean Society of Food Science and Nutrition.2014; 43(7): 963.     CrossRef
  • The roles of aerobic exercise training and suppression IL-6 gene expression by RNA interference in the development of insulin resistance
    Hui Tang, Min-hao Xie, Yu Lei, Liang Zhou, Yu-ping Xu, Jian-guang Cai
    Cytokine.2013; 61(2): 394.     CrossRef
  • Long-Term Consequences of Developmental Alcohol Exposure on Brain Structure and Function: Therapeutic Benefits of Physical Activity
    Anna Klintsova, Gillian Hamilton, Karen Boschen
    Brain Sciences.2012; 3(1): 1.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP