Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
42 "Blood glucose"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Others
Article image
Contributions of Hepatic Insulin Resistance and Islet β-Cell Dysfunction to the Blood Glucose Spectrum in Newly Diagnosed Type 2 Diabetes Mellitus
Mengge Yang, Ying Wei, Jia Liu, Ying Wang, Guang Wang
Received September 5, 2024  Accepted December 12, 2024  Published online February 13, 2025  
DOI: https://doi.org/10.4093/dmj.2024.0537    [Epub ahead of print]
  • 656 View
  • 70 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Our previous studies have investigated the role of hepatic insulin resistance (hepatic IR) and islet β-cell function in the pathogenesis of diabetes. This study aimed to explore the contributions of hepatic IR and islet β-cell dysfunction to the blood glucose spectrum in patients with newly diagnosed type 2 diabetes mellitus.
Methods
Hepatic IR was assessed by the hepatic insulin resistance index (HIRI). Islet β-cell function was assessed by insulin secretion- sensitivity index-2 (ISSI2). The associations between blood glucose spectrum and hepatic IR and ISSI2 were analyzed.
Results
A total of 707 patients with new-onset diabetes were included. The fasting blood glucose (FBG) and 30 minutes postload blood glucose elevated with rising HIRI (both P for trend <0.001). The FBG, 30 minutes, 2 hours, and 3 hours post-load blood glucose elevated with decreasing ISSI2 quartiles (all P for trend <0.001). There was a negative correlation between ISSI2 and HIRI after adjusting blood glucose levels (r=–0.199, P<0.001).
Conclusion
Hepatic IR mainly contributed to FBG and early-phase postprandial plasma glucose, whereas β-cell dysfunction contributed to fasting and postprandial plasma glucose at each phase.
Brief Report
Technology/Device
Article image
Effectiveness of Predicted Low-Glucose Suspend Pump Technology in the Prevention of Hypoglycemia in People with Type 1 Diabetes Mellitus: Real-World Data Using DIA:CONN G8
Jee Hee Yoo, Ji Yoon Kim, Jae Hyeon Kim
Diabetes Metab J. 2025;49(1):144-149.   Published online August 28, 2024
DOI: https://doi.org/10.4093/dmj.2024.0039
  • 1,577 View
  • 130 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
We evaluated the effectiveness of the predictive low-glucose suspend (PLGS) algorithm in the DIA:CONN G8. Forty people with type 1 diabetes mellitus (T1DM) who used a DIA:CONN G8 for at least 2 months with prior experience using pumps without and with PLGS were retrospectively analyzed. The objective was to assess the changes in time spent in hypoglycemia (percent of time below range [%TBR]) before and after using PLGS. The mean age, sensor glucose levels, glucose threshold for suspension, and suspension time were 31.1±22.8 years, 159.7±23.2 mg/dL, 81.1±9.1 mg/dL, and 111.9±79.8 min/day, respectively. Overnight %TBR <70 mg/dL was significantly reduced after using the algorithm (differences=0.3%, from 1.4%±1.5% to 1.1%±1.2%, P=0.045). The glycemia risk index (GRI) improved significantly by 4.2 (from 38.8±20.9 to 34.6±19.0, P=0.002). Using the PLGS did not result in a change in the hyperglycemia metric (all P>0.05). Our findings support the PLGS in DIA:CONN G8 as an effective algorithm to improve night-time hypoglycemia and GRI in people with T1DM.
Original Articles
Type 1 Diabetes
Article image
Optimal Coefficient of Variance Threshold to Minimize Hypoglycemia Risk in Individuals with Well-Controlled Type 1 Diabetes Mellitus
Jee Hee Yoo, Seung Hee Yang, Sang-Man Jin, Jae Hyeon Kim
Diabetes Metab J. 2024;48(3):429-439.   Published online March 4, 2024
DOI: https://doi.org/10.4093/dmj.2023.0083
  • 3,318 View
  • 256 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
This study investigated the optimal coefficient of variance (%CV) for preventing hypoglycemia based on real-time continuous glucose monitoring (rt-CGM) data in people with type 1 diabetes mellitus (T1DM) already achieving their mean glucose (MG) target.
Methods
Data from 172 subjects who underwent rt-CGM for at least 90 days and for whom 439 90-day glycemic profiles were available were analyzed. Receiver operator characteristic analysis was conducted to determine the cut-off value of %CV to achieve time below range (%TBR)<54 mg/dL <1 and =0.
Results
Overall mean glycosylated hemoglobin was 6.8% and median %TBR<54 mg/dL was 0.2%. MG was significantly higher and %CV significantly lower in profiles achieving %TBR<54 mg/dL <1 compared to %TBR<54 mg/dL ≥1 (all P<0.001). The cut-off value of %CV for achieving %TBR<54 mg/dL <1 was 37.5%, 37.3%, and 31.0%, in the whole population, MG >135 mg/dL, and ≤135 mg/dL, respectively. The cut-off value for %TBR<54 mg/dL=0% was 29.2% in MG ≤135 mg/dL. In profiles with MG ≤135 mg/dL, 94.2% of profiles with a %CV <31 achieved the target of %TBR<54 mg/dL <1, and 97.3% with a %CV <29.2 achieved the target of %TBR<54 mg/ dL=0%. When MG was >135 mg/dL, 99.4% of profiles with a %CV <37.3 achieved %TBR<54 mg/dL <1.
Conclusion
In well-controlled T1DM with MG ≤135 mg/dL, we suggest a %CV <31% to achieve the %TBR<54 mg/dL <1 target. Furthermore, we suggest a %CV <29.2% to achieve the target of %TBR<54 mg/dL =0 for people at high risk of hypoglycemia.
Technology/Device
Article image
Clinical and Lifestyle Determinants of Continuous Glucose Monitoring Metrics in Insulin-Treated Patients with Type 2 Diabetes Mellitus
Da Young Lee, Namho Kim, Inha Jung, So Young Park, Ji Hee Yu, Ji A Seo, Jihee Kim, Kyeong Jin Kim, Nam Hoon Kim, Hye Jin Yoo, Sin Gon Kim, Kyung Mook Choi, Sei Hyun Baik, Sung-Min Park, Nan Hee Kim
Diabetes Metab J. 2023;47(6):826-836.   Published online August 24, 2023
DOI: https://doi.org/10.4093/dmj.2022.0273
  • 4,515 View
  • 252 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
There was limited evidence to evaluate the association between lifestyle habits and continuous glucose monitoring (CGM) metrics. Thus, we aimed to depict the behavioral and metabolic determinants of CGM metrics in insulin-treated patients with type 2 diabetes mellitus (T2DM).
Methods
This is a prospective observational study. We analyzed data from 122 insulin-treated patients with T2DM. Participants wore Dexcom G6 and Fitbit, and diet information was identified for 10 days. Multivariate-adjusted logistic regression analysis was performed for the simultaneous achievement of CGM-based targets, defined by the percentage of time in terms of hyper, hypoglycemia and glycemic variability (GV). Intake of macronutrients and fiber, step counts, sleep, postprandial C-peptide-to-glucose ratio (PCGR), information about glucose lowering medications and metabolic factors were added to the analyses. Additionally, we evaluated the impact of the distribution of energy and macronutrient during a day, and snack consumption on CGM metrics.
Results
Logistic regression analysis revealed that female, participants with high PCGR, low glycosylated hemoglobin (HbA1c) and daytime step count had a higher probability of achieving all targets based on CGM (odds ratios [95% confidence intervals] which were 0.24 [0.09 to 0.65], 1.34 [1.03 to 1.25], 0.95 [0.9 to 0.99], and 1.15 [1.03 to 1.29], respectively). And participants who ate snacks showed a shorter period of hyperglycemia and less GV compared to those without.
Conclusion
We confirmed that residual insulin secretion, daytime step count, HbA1c, and women were the most relevant determinants of adequate glycemic control in insulin-treated patients with T2DM. In addition, individuals with snack consumption were exposed to lower times of hyperglycemia and GV.

Citations

Citations to this article as recorded by  
  • Explanatory variables of objectively measured 24-h movement behaviors in people with prediabetes and type 2 diabetes: A systematic review
    Lotte Bogaert, Iris Willems, Patrick Calders, Eveline Dirinck, Manon Kinaupenne, Marga Decraene, Bruno Lapauw, Boyd Strumane, Margot Van Daele, Vera Verbestel, Marieke De Craemer
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2024; 18(4): 102995.     CrossRef
Technology/Device
Article image
Glycemia according to the Use of Continuous Glucose Monitoring among Adults with Type 1 Diabetes Mellitus in Korea: A Real-World Study
You-Bin Lee, Minjee Kim, Jae Hyeon Kim
Diabetes Metab J. 2023;47(3):405-414.   Published online March 6, 2023
DOI: https://doi.org/10.4093/dmj.2022.0032
  • 5,326 View
  • 161 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
We explored the association between continuous glucose monitoring (CGM) use and glycemia among adults with type 1 diabetes mellitus (T1DM) and determined the status of CGM metrics among adults with T1DM using CGM in the real-world.
Methods
For this propensity-matched cross-sectional study, individuals with T1DM who visited the outpatient clinic of the Endocrinology Department of Samsung Medical Center between March 2018 and February 2020 were screened. Among them, 111 CGM users (for ≥9 months) were matched based on propensity score considering age, sex, and diabetes duration in a 1:2 ratio with 203 CGM never-users. The association between CGM use and glycemic measures was explored. In a subpopulation of CGM users who had been using official applications (not “do-it-yourself” software) such that Ambulatory Glucose Profile data for ≥1 month were available (n=87), standardized CGM metrics were summarized.
Results
Linear regression analyses identified CGM use as a determining factor for log-transformed glycosylated hemoglobin. The fully-adjusted odds ratio (OR) and 95% confidence interval (CI) for uncontrolled glycosylated hemoglobin (>8%) were 0.365 (95% CI, 0.190 to 0.703) in CGM users compared to never-users. The fully-adjusted OR for controlled glycosylated hemoglobin (<7%) was 1.861 (95% CI, 1.119 to 3.096) in CGM users compared to never-users. Among individuals who had been using official applications for CGM, time in range (TIR) values within recent 30- and 90-day periods were 62.45%±16.63% and 63.08%±15.32%, respectively.
Conclusion
CGM use was associated with glycemic control status among Korean adults with T1DM in the real-world, although CGM metrics including TIR might require further improvement among CGM users.

Citations

Citations to this article as recorded by  
  • Real-World Continuous Glucose Monitoring Data from a Population with Type 1 Diabetes in South Korea: Nationwide Single-System Analysis
    Ji Yoon Kim, Sang-Man Jin, Sarah B. Andrade, Boyang Chen, Jae Hyeon Kim
    Diabetes Technology & Therapeutics.2024; 26(6): 394.     CrossRef
  • Accuracy and Safety of the 15-Day CareSens Air Continuous Glucose Monitoring System
    Kyung-Soo Kim, Seung-Hwan Lee, Won Sang Yoo, Cheol-Young Park
    Diabetes Technology & Therapeutics.2024; 26(4): 222.     CrossRef
  • Disparities in Diabetes Technology Uptake in Youth and Young Adults With Type 1 Diabetes: A Global Perspective
    Rebecca Baqiyyah Conway, Janet Snell-Bergeon, Kyoko Honda-Kohmo, Anil Kumar Peddi, Salbiah Binti Isa, Shakira Sulong, Laurien Sibomana, Andrea Gerard Gonzalez, Jooyoun Song, Kate Elizabeth Lomax, Ching-Nien Lo, Wondong Kim, Aveni Haynes, Martin de Bock, M
    Journal of the Endocrine Society.2024;[Epub]     CrossRef
  • Navigating the Seas of Glycemic Control: The Role of Continuous Glucose Monitoring in Type 1 Diabetes Mellitus
    Jun Sung Moon
    Diabetes & Metabolism Journal.2023; 47(3): 345.     CrossRef
  • Smart Insulin Pen: Managing Insulin Therapy for People with Diabetes in the Digital Era
    Jee Hee Yoo, Jae Hyeon Kim
    The Journal of Korean Diabetes.2023; 24(4): 190.     CrossRef
Reviews
Technology/Device
Article image
Advances in Continuous Glucose Monitoring and Integrated Devices for Management of Diabetes with Insulin-Based Therapy: Improvement in Glycemic Control
Jee Hee Yoo, Jae Hyeon Kim
Diabetes Metab J. 2023;47(1):27-41.   Published online January 12, 2023
DOI: https://doi.org/10.4093/dmj.2022.0271
  • 13,816 View
  • 575 Download
  • 26 Web of Science
  • 33 Crossref
AbstractAbstract PDFPubReader   ePub   
Continuous glucose monitoring (CGM) technology has evolved over the past decade with the integration of various devices including insulin pumps, connected insulin pens (CIPs), automated insulin delivery (AID) systems, and virtual platforms. CGM has shown consistent benefits in glycemic outcomes in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) treated with insulin. Moreover, the combined effect of CGM and education have been shown to improve glycemic outcomes more than CGM alone. Now a CIP is the expected future technology that does not need to be worn all day like insulin pumps and helps to calculate insulin doses with a built-in bolus calculator. Although only a few clinical trials have assessed the effectiveness of CIPs, they consistently show benefits in glycemic outcomes by reducing missed doses of insulin and improving problematic adherence. AID systems and virtual platforms made it possible to achieve target glycosylated hemoglobin in diabetes while minimizing hypoglycemia, which has always been challenging in T1DM. Now fully automatic AID systems and tools for diabetes decisions based on artificial intelligence are in development. These advances in technology could reduce the burden associated with insulin treatment for diabetes.

Citations

Citations to this article as recorded by  
  • Inter-temporal dynamic joint learning model considering intra- and inter-day mutable correlations for blood glucose level prediction
    Shuang Wen, Hongru Li, Yinghua Yang
    Biomedical Signal Processing and Control.2025; 101: 107204.     CrossRef
  • Glycemia Risk Index is Associated With Risk of Albuminuria Among Individuals With Type 1 Diabetes
    Ji Yoon Kim, Jee Hee Yoo, Nam Hoon Kim, Jae Hyeon Kim
    Journal of Diabetes Science and Technology.2025;[Epub]     CrossRef
  • Real-World Life Analysis of a Continuous Glucose Monitoring and Smart Insulin Pen System in Type 1 Diabetes: A Cohort Study
    Paola Pantanetti, Giovanni Cangelosi, Sara Morales Palomares, Gaetano Ferrara, Federico Biondini, Stefano Mancin, Gabriele Caggianelli, Mauro Parozzi, Marco Sguanci, Fabio Petrelli
    Diabetology.2025; 6(1): 7.     CrossRef
  • Abuse-deterrent wearable device with potential for extended delivery of opioid drugs
    Myoung Ju Kim, Jae Min Park, Jun Su Lee, Ji Yang Lee, Juhui Lee, Chang Hee Min, Min Ji Kim, Jae Hoon Han, Eun Jung Kwon, Young Bin Choy
    Biomedical Engineering Letters.2025; 15(2): 427.     CrossRef
  • Recent advances in artificial intelligence-assisted endocrinology and diabetes
    Ioannis T. Oikonomakos, Ranjit M. Anjana, Viswanathan Mohan, Charlotte Steenblock, Stefan R. Bornstein
    Exploration of Endocrine and Metabolic Disease.2024; 1(1): 16.     CrossRef
  • Accuracy and Safety of the 15-Day CareSens Air Continuous Glucose Monitoring System
    Kyung-Soo Kim, Seung-Hwan Lee, Won Sang Yoo, Cheol-Young Park
    Diabetes Technology & Therapeutics.2024; 26(4): 222.     CrossRef
  • Real-World Continuous Glucose Monitoring Data from a Population with Type 1 Diabetes in South Korea: Nationwide Single-System Analysis
    Ji Yoon Kim, Sang-Man Jin, Sarah B. Andrade, Boyang Chen, Jae Hyeon Kim
    Diabetes Technology & Therapeutics.2024; 26(6): 394.     CrossRef
  • Recent advances in the precision control strategy of artificial pancreas
    Wuyi Ming, Xudong Guo, Guojun Zhang, Yinxia Liu, Yongxin Wang, Hongmei Zhang, Haofang Liang, Yuan Yang
    Medical & Biological Engineering & Computing.2024; 62(6): 1615.     CrossRef
  • Digital Health in Diabetes and Cardiovascular Disease
    Dorothy Avoke, Abdallah Elshafeey, Robert Weinstein, Chang H. Kim, Seth S. Martin
    Endocrine Research.2024; 49(3): 124.     CrossRef
  • Continuous glucose monitoring with structured education in adults with type 2 diabetes managed by multiple daily insulin injections: a multicentre randomised controlled trial
    Ji Yoon Kim, Sang-Man Jin, Kang Hee Sim, Bo-Yeon Kim, Jae Hyoung Cho, Jun Sung Moon, Soo Lim, Eun Seok Kang, Cheol-Young Park, Sin Gon Kim, Jae Hyeon Kim
    Diabetologia.2024; 67(7): 1223.     CrossRef
  • Smart solutions in hypertension diagnosis and management: a deep dive into artificial intelligence and modern wearables for blood pressure monitoring
    Anubhuti Juyal, Shradha Bisht, Mamta F. Singh
    Blood Pressure Monitoring.2024; 29(5): 260.     CrossRef
  • Emerging trends in functional molecularly imprinted polymers for electrochemical detection of biomarkers
    Sanjida Yeasmin, Li-Jing Cheng
    Biomicrofluidics.2024;[Epub]     CrossRef
  • Continuous glucose monitoring in pregnant women with pregestational type 2 diabetes: a narrative review
    Sylvia Ye, Ibrahim Shahid, Christopher J Yates, Dev Kevat, I-Lynn Lee
    Obstetric Medicine.2024; 17(4): 194.     CrossRef
  • Advancements in nanohybrid material-based acetone gas sensors relevant to diabetes diagnosis: A comprehensive review
    Arpit Verma, Deepankar Yadav, Subramanian Natesan, Monu Gupta, Bal Chandra Yadav, Yogendra Kumar Mishra
    Microchemical Journal.2024; 201: 110713.     CrossRef
  • Current treatment options of diabetes mellitus type 1 in pediatric population
    Petr Polák, Renata Pomahačová, Karel Fiklík, Petra Paterová, Josef Sýkora
    Pediatrie pro praxi.2024; 25(3): 161.     CrossRef
  • Efectividad de un sistema híbrido de circuito cerrado en pacientes con diabetes tipo 1 durante el ejercicio físico: un estudio descriptivo en la vida real
    Ruben Martin-Payo, Maria del Mar Fernandez-Alvarez, Rebeca García-García, Ángela Pérez-Varela, Shelini Surendran, Isolina Riaño-Galán
    Anales de Pediatría.2024; 101(3): 183.     CrossRef
  • Effectiveness of a hybrid closed-loop system for children and adolescents with type 1 diabetes during physical exercise: A cross-sectional study in real life
    Ruben Martin-Payo, Maria del Mar Fernandez-Alvarez, Rebeca García-García, Ángela Pérez-Varela, Shelini Surendran, Isolina Riaño-Galán
    Anales de Pediatría (English Edition).2024; 101(3): 183.     CrossRef
  • Real-time continuous glucose monitoring vs. self-monitoring of blood glucose: cost-utility in South Korean type 2 diabetes patients on intensive insulin
    Ji Yoon Kim, Sabrina Ilham, Hamza Alshannaq, Richard F. Pollock, Waqas Ahmed, Gregory J. Norman, Sang-Man Jin, Jae Hyeon Kim
    Journal of Medical Economics.2024; 27(1): 1245.     CrossRef
  • Impact of missed insulin doses on glycaemic parameters in people with diabetes using smart insulin pens
    Malavika Varma, David J T Campbell
    Evidence Based Nursing.2024; : ebnurs-2024-104109.     CrossRef
  • Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
    Byung-Joon Kim, Jun-Seop Shin, Byoung-Hoon Min, Jong-Min Kim, Chung-Gyu Park, Hee-Jung Kang, Eung Soo Hwang, Won-Woo Lee, Jung-Sik Kim, Hyun Je Kim, Iov Kwon, Jae Sung Kim, Geun Soo Kim, Joonho Moon, Du Yeon Shin, Bumrae Cho, Heung-Mo Yang, Sung Joo Kim,
    Diabetes & Metabolism Journal.2024; 48(6): 1160.     CrossRef
  • Long-Term Benefits of Continuous Glucose Monitoring Combined with Insulin Pump Therapy
    Rukhsana Zulfiqar, Komal Abbas, Saeeda Khan, Kanwal Fatima, Adnan Manzoor, Muhammad Awais
    Indus Journal of Bioscience Research.2024; 2(2): 785.     CrossRef
  • Continuous Glucose Monitoring—New Diagnostic Tool in Complex Pathophysiological Disorder of Glucose Metabolism in Children and Adolescents with Obesity
    Marko Simunovic, Marko Kumric, Doris Rusic, Martina Paradzik Simunovic, Josko Bozic
    Diagnostics.2024; 14(24): 2801.     CrossRef
  • Innovations in Diabetes Management for Pregnant Women: Artificial Intelligence and the Internet of Medical Things
    Ellen M. Murrin, Antonio F. Saad, Scott Sullivan, Yuri Millo, Menachem Miodovnik
    American Journal of Perinatology.2024;[Epub]     CrossRef
  • Glycemic Outcomes During Early Use of the MiniMed™ 780G Advanced Hybrid Closed-Loop System with Guardian™ 4 Sensor
    Toni L. Cordero, Zheng Dai, Arcelia Arrieta, Fang Niu, Melissa Vella, John Shin, Andrew S. Rhinehart, Jennifer McVean, Scott W. Lee, Robert H. Slover, Gregory P. Forlenza, Dorothy I. Shulman, Rodica Pop-Busui, James R. Thrasher, Mark S. Kipnes, Mark P. Ch
    Diabetes Technology & Therapeutics.2023; 25(9): 652.     CrossRef
  • Navigating the Seas of Glycemic Control: The Role of Continuous Glucose Monitoring in Type 1 Diabetes Mellitus
    Jun Sung Moon
    Diabetes & Metabolism Journal.2023; 47(3): 345.     CrossRef
  • APSec1.0: Innovative Security Protocol Design with Formal Security Analysis for the Artificial Pancreas System
    Jiyoon Kim, Jongmin Oh, Daehyeon Son, Hoseok Kwon, Philip Virgil Astillo, Ilsun You
    Sensors.2023; 23(12): 5501.     CrossRef
  • Advances and Development of Electronic Neural Interfaces
    Xue Jiaxiang, Liu Zhixin
    Journal of Computing and Natural Science.2023; : 147.     CrossRef
  • Continuous Glucose Monitoring (CGM) and Metabolic Control in a Cohort of Patients with Type 1 Diabetes and Coeliac Disease
    Flavia Amaro, Maria Alessandra Saltarelli, Marina Primavera, Marina Cerruto, Stefano Tumini
    Endocrines.2023; 4(3): 595.     CrossRef
  • Comparison of Glycemia Risk Index with Time in Range for Assessing Glycemic Quality
    Ji Yoon Kim, Jee Hee Yoo, Jae Hyeon Kim
    Diabetes Technology & Therapeutics.2023; 25(12): 883.     CrossRef
  • The Benefits Of Continuous Glucose Monitoring In Pregnancy
    Jee Hee Yoo, Jae Hyeon Kim
    Endocrinology and Metabolism.2023; 38(5): 472.     CrossRef
  • The Growing Challenge of Diabetes Management in an Aging Society
    Seung-Hwan Lee
    Diabetes & Metabolism Journal.2023; 47(5): 630.     CrossRef
  • An Observational Pilot Study of a Tailored Environmental Monitoring and Alert System for Improved Management of Chronic Respiratory Diseases
    Mohammed Alotaibi, Fady Alnajjar, Badr A Alsayed, Tareq Alhmiedat, Ashraf M Marei, Anas Bushnag, Luqman Ali
    Journal of Multidisciplinary Healthcare.2023; Volume 16: 3799.     CrossRef
  • Smart Insulin Pen: Managing Insulin Therapy for People with Diabetes in the Digital Era
    Jee Hee Yoo, Jae Hyeon Kim
    The Journal of Korean Diabetes.2023; 24(4): 190.     CrossRef
Guideline/Fact Sheet
Article image
Comprehensive Understanding for Application in Korean Patients with Type 2 Diabetes Mellitus of the Consensus Statement on Carbohydrate-Restricted Diets by Korean Diabetes Association, Korean Society for the Study of Obesity, and Korean Society of Hypertension
Jong Han Choi, Jee-Hyun Kang, Suk Chon
Diabetes Metab J. 2022;46(3):377-390.   Published online May 25, 2022
DOI: https://doi.org/10.4093/dmj.2022.0051
  • 7,138 View
  • 283 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDFPubReader   ePub   
The Joint Committee of the Korean Diabetes Association, the Korean Society for the Study of Obesity, and the Korean Society of Hypertension announced a consensus statement on carbohydrate-restricted diets and intermittent fasting, representing an emerging and popular dietary pattern. In this statement, we recommend moderately-low-carbohydrate or low-carbohydrate diets, not a very-low-carbohydrate diet, for patients with type 2 diabetes mellitus. These diets can be considered a dietary regimen to improve glycemic control and reduce body weight in adults with type 2 diabetes mellitus. This review provides the detailed results of a meta-analysis and systematic literature review on the potential harms and benefits of carbohydrate-restricted diets in patients with diabetes. We expect that this review will help experts and patients by fostering an in-depth understanding and appropriate application of carbohydrate-restricted diets in the comprehensive management of diabetes.

Citations

Citations to this article as recorded by  
  • The effects of low-carbohydrate diet on glucose and lipid metabolism in overweight or obese patients with T2DM: a meta-analysis of randomized controlled trials
    Wende Tian, Shuyu Cao, Yongxin Guan, Zihao Zhang, Qiyu Liu, Jianqing Ju, Ruixi Xi, Ruina Bai
    Frontiers in Nutrition.2025;[Epub]     CrossRef
  • Efficacy of convenience meal-type foods designed for diabetes in the management of metabolic syndrome based on a 3-week trial
    Do Gyeong Lee, In Gyeong Kang, Tae Seok Kim, Yun Ahn, Sang Yun Lee, Hye Jin Ahn, Yoo Kyoung Park
    Nutrition.2024; 118: 112287.     CrossRef
  • Long-Term Results of a Digital Diabetes Self-Management and Education Support Program Among Adults With Type 2 Diabetes: A Retrospective Cohort Study
    Ashley Berthoumieux, Sarah Linke, Melinda Merry, Alison Megliola, Jessie Juusola, Jenna Napoleone
    The Science of Diabetes Self-Management and Care.2024; 50(1): 19.     CrossRef
  • Medical nutrition therapy for diabetes mellitus
    Suk Chon
    Journal of the Korean Medical Association.2023; 66(7): 421.     CrossRef
Short Communication
Technology/Device
Comparison of Laser and Conventional Lancing Devices for Blood Glucose Measurement Conformance and Patient Satisfaction in Diabetes Mellitus
Jung A Kim, Min Jeong Park, Eyun Song, Eun Roh, So Young Park, Da Young Lee, Jaeyoung Kim, Ji Hee Yu, Ji A Seo, Kyung Mook Choi, Sei Hyun Baik, Hye Jin Yoo, Nan Hee Kim
Diabetes Metab J. 2022;46(6):936-940.   Published online March 30, 2022
DOI: https://doi.org/10.4093/dmj.2021.0293
  • 7,160 View
  • 292 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDFPubReader   ePub   
Self-monitoring of capillary blood glucose is important for controlling diabetes. Recently, a laser lancing device (LMT-1000) that can collect capillary blood without skin puncture was developed. We enrolled 150 patients with type 1 or 2 diabetes mellitus. Blood sampling was performed on the same finger on each hand using the LMT-1000 or a conventional lancet. The primary outcome was correlation between glucose values using the LMT-1000 and that using a lancet. And we compared the pain and satisfaction of the procedures. The capillary blood sampling success rates with the LMT-1000 and lancet were 99.3% and 100%, respectively. There was a positive correlation (r=0.974, P<0.001) between mean blood glucose levels in the LMT-1000 (175.8±63.0 mg/dL) and conventional lancet samples (172.5±63.6 mg/dL). LMT-1000 reduced puncture pain by 75.0% and increased satisfaction by 80.0% compared to a lancet. We demonstrated considerable consistency in blood glucose measurements between samples from the LMT-1000 and a lancet, but improved satisfaction and clinically significant pain reduction were observed with the LMT-1000 compared to those with a lancet.

Citations

Citations to this article as recorded by  
  • Pain-Related Responses in Preterm Babies Using Automated and Laser Heel-Lancing Devices
    Hea Jin Lee, Myoung Soo Kim, Mi Lim Chung
    Creative Nursing.2025;[Epub]     CrossRef
  • Comparison between a laser-lancing device and automatic incision lancet for capillary blood sampling from the heel of newborn infants: a randomized feasibility trial
    Chul Kyu Yun, Eui Kyung Choi, Hyung Jin Kim, Jaeyoung Kim, Byung Cheol Park, Kyuhee Park, Byung Min Choi
    Journal of Perinatology.2024; 44(8): 1193.     CrossRef
  • Comparison of laser and traditional lancing devices for capillary blood sampling in patients with diabetes mellitus and high bleeding risk
    Min Jeong Park, Soon Young Hwang, Ahreum Jang, Soo Yeon Jang, Eyun Song, So Young Park, Da Young Lee, Jaeyoung Kim, Byung Cheol Park, Ji Hee Yu, Ji A Seo, Kyung Mook Choi, Sei Hyun Baik, Hye Jin Yoo, Nan Hee Kim
    Lasers in Medical Science.2024;[Epub]     CrossRef
Original Article
Technology/Device
Article image
Glucose Profiles Assessed by Intermittently Scanned Continuous Glucose Monitoring System during the Perioperative Period of Metabolic Surgery
Kyuho Kim, Sung Hee Choi, Hak Chul Jang, Young Suk Park, Tae Jung Oh
Diabetes Metab J. 2022;46(5):713-721.   Published online January 24, 2022
DOI: https://doi.org/10.4093/dmj.2021.0164
  • 7,072 View
  • 363 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Continuous glucose monitoring (CGM) has been widely used in the management of diabetes. However, the usefulness and detailed data during perioperative status were not well studied. In this study, we described the immediate changes of glucose profiles after metabolic surgery using intermittently scanned CGM (isCGM) in individuals with type 2 diabetes mellitus (T2DM).
Methods
This was a prospective, single-center, single-arm study including 20 participants with T2DM. The isCGM (FreeStyle Libre CGM) implantation was performed within 2 weeks before surgery. We compared CGM metrics of 3 days before surgery and 3 days after surgery, and performed the correlation analyses with clinical variables.
Results
The mean glucose significantly decreased after surgery (147.0±40.4 to 95.5±17.1 mg/dL, P<0.001). Time in range (TIR; 70 to 180 mg/dL) did not significantly change after surgery in total. However, it was significantly increased in a subgroup of individuals with glycosylated hemoglobin (HbA1c) ≥8.0%. Time above range (>250 or 180 mg/dL) was significantly decreased in total. In contrast, time below range (<70 or 54 mg/dL) was significantly increased in total and especially in a subgroup of individuals with HbA1c <8.0% after surgery. The coefficient of variation significantly decreased after surgery. Higher baseline HbA1c was correlated with greater improvement in TIR (rho=0.607, P=0.005).
Conclusion
The isCGM identified improvement of mean glucose and glycemic variability, and increase of hypoglycemia after metabolic surgery, but TIR was not significantly changed after surgery. We detected an increase of TIR only in individuals with HbA1c ≥8.0%.

Citations

Citations to this article as recorded by  
  • Continuous peri-operative glucose monitoring in noncardiac surgery
    Alessandro Putzu, Elliot Grange, Raoul Schorer, Eduardo Schiffer, Karim Gariani
    European Journal of Anaesthesiology.2025; 42(2): 162.     CrossRef
  • Reality of post-gastrectomy stress hyperglycemia revealed by continuous glucose monitoring: a prospective study
    Keiji Nishibeppu, Takeshi Kubota, Yudai Nakabayashi, Hiroyuki Inoue, Kazuya Takabatake, Takuma Ohashi, Hirotaka Konishi, Atsushi Shiozaki, Hitoshi Fujiwara, Eigo Otsuji
    Surgery Today.2025;[Epub]     CrossRef
  • Comparative Effect of Glucose-Lowering Drugs for Type 2 Diabetes Mellitus on Stroke Prevention: A Systematic Review and Network Meta-Analysis
    Ji Soo Kim, Gyeongsil Lee, Kyung-Il Park, Seung-Won Oh
    Diabetes & Metabolism Journal.2024; 48(2): 312.     CrossRef
  • Continuous Glucose Monitoring Captures Glycemic Variability After Roux-en-Y Gastric Bypass in Patients with and Without Type 2 Diabetes Mellitus: A Prospective Cohort Study
    Raquel do A. P. Quevedo, Maria Edna de Melo, Cintia Cercato, Ariana E. Fernandes, Anna Carolina B. Dantas, Marco Aurélio Santo, Denis Pajecki, Marcio C. Mancini
    Obesity Surgery.2024; 34(8): 2789.     CrossRef
  • Perioperative Management of Adult Patients with Diabetes Wearing Devices: A Society for Perioperative Assessment and Quality Improvement (SPAQI) Expert Consensus Statement
    Adriana D. Oprea, Smita K. Kalra, Elizabeth W. Duggan, Linda L. Russell, Richard D. Urman, Basem B. Abdelmalak, Preethi Patel, Kurt J. Pfeifer, Paul J. Grant, Marina M. Charitou, Carlos E. Mendez, Jennifer L. Sherr, Guillermo E. Umpierrez, David C. Klonof
    Journal of Clinical Anesthesia.2024; 99: 111627.     CrossRef
  • Consensus Considerations and Good Practice Points for Use of Continuous Glucose Monitoring Systems in Hospital Settings
    Julie L.V. Shaw, Raveendhara R. Bannuru, Lori Beach, Nuha A. ElSayed, Guido Freckmann, Anna K. Füzéry, Angela W.S. Fung, Jeremy Gilbert, Yun Huang, Nichole Korpi-Steiner, Samantha Logan, Rebecca Longo, Dylan MacKay, Lisa Maks, Stefan Pleus, Kendall Rogers
    Diabetes Care.2024; 47(12): 2062.     CrossRef
  • Use of Continuous Glucose Monitoring in Patients Following Bariatric Surgery: A Scoping Review
    Yang Yu, Susan W. Groth
    Obesity Surgery.2023; 33(8): 2573.     CrossRef
  • Asymptomatic Hypoglycemia after Metabolic Surgery: New Insights from Perioperative Continuous Glucose Monitoring
    Sang-Man Jin
    Diabetes & Metabolism Journal.2022; 46(5): 675.     CrossRef
Review
Technology/Device
Article image
Current Advances of Artificial Pancreas Systems: A Comprehensive Review of the Clinical Evidence
Sun Joon Moon, Inha Jung, Cheol-Young Park
Diabetes Metab J. 2021;45(6):813-839.   Published online November 22, 2021
DOI: https://doi.org/10.4093/dmj.2021.0177
  • 20,663 View
  • 974 Download
  • 52 Web of Science
  • 49 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Since Banting and Best isolated insulin in the 1920s, dramatic progress has been made in the treatment of type 1 diabetes mellitus (T1DM). However, dose titration and timely injection to maintain optimal glycemic control are often challenging for T1DM patients and their families because they require frequent blood glucose checks. In recent years, technological advances in insulin pumps and continuous glucose monitoring systems have created paradigm shifts in T1DM care that are being extended to develop artificial pancreas systems (APSs). Numerous studies that demonstrate the superiority of glycemic control offered by APSs over those offered by conventional treatment are still being published, and rapid commercialization and use in actual practice have already begun. Given this rapid development, keeping up with the latest knowledge in an organized way is confusing for both patients and medical staff. Herein, we explore the history, clinical evidence, and current state of APSs, focusing on various development groups and the commercialization status. We also discuss APS development in groups outside the usual T1DM patients and the administration of adjunct agents, such as amylin analogues, in APSs.

Citations

Citations to this article as recorded by  
  • Implantable Fluorogenic DNA Biosensor for Stress Detection
    Irina Drachuk, Namrata Ramani, Svetlana Harbaugh, Chad A. Mirkin, Jorge L. Chávez
    ACS Applied Materials & Interfaces.2025; 17(1): 130.     CrossRef
  • CHoKI-based MPC for blood glucose regulation in Artificial Pancreas
    Beatrice Sonzogni, José María Manzano, Marco Polver, Fabio Previdi, Antonio Ferramosca
    IFAC Journal of Systems and Control.2025; 31: 100294.     CrossRef
  • Automated insulin delivery in pregnant women with type 1 diabetes: a systematic review and meta-analysis
    Qin Yang, Jiayi Hao, Huijing Cui, Qingqing Yang, Feng Sun, Baoqi Zeng
    Acta Diabetologica.2025;[Epub]     CrossRef
  • Designing and developing a prescription digital therapeutic for at-home heart rate variability biofeedback to support and enhance patient outcomes in post-traumatic stress disorder treatment
    Rebecca Macy, Flavio Somanji, Oleksandr Sverdlov
    Frontiers in Digital Health.2025;[Epub]     CrossRef
  • Generalized reinforcement learning control algorithm for fully automated insulin delivery system
    Vega Pradana Rachim, Junyoung Yoo, Jaeyeon Lee, Yein Lee, Sung-Min Park
    Expert Systems with Applications.2025; 274: 126909.     CrossRef
  • Integration of a Safety Module to Prevent Rebound Hypoglycemia in Closed-Loop Artificial Pancreas Systems
    María F. Villa-Tamayo, Patricio Colmegna, Marc D. Breton
    Journal of Diabetes Science and Technology.2024; 18(2): 318.     CrossRef
  • The effects of acute hyperglycaemia on sports and exercise performance in type 1 diabetes: A systematic review and meta-analysis
    Bonar McGuire, Hashim Dadah, Dominic Oliver
    Journal of Science and Medicine in Sport.2024; 27(2): 78.     CrossRef
  • A new approach to stabilize diabetes systems with time-varying delays and disturbance rejection
    S. Syafiie, Fahd Alharbi, Abdullah Ali Alshehri, Bassam Hasanain
    Journal of the Franklin Institute.2024; 361(1): 543.     CrossRef
  • Effects of Low-Dose Glucagon on Subcutaneous Insulin Absorption in Pigs
    Ingrid Anna Teigen, Marte Kierulf Åm, Misbah Riaz, Sverre Christian Christiansen, Sven Magnus Carlsen
    Current Therapeutic Research.2024; 100: 100736.     CrossRef
  • Enhancing equity in access to automated insulin delivery systems in an ethnically and socioeconomically diverse group of children with type 1 diabetes
    John Pemberton, Louise Collins, Lesley Drummond, Renuka P Dias, Ruth Krone, Melanie Kershaw, Suma Uday
    BMJ Open Diabetes Research & Care.2024; 12(3): e004045.     CrossRef
  • Robust Online Correlation Method for Identification of a Nonparametric Model of Type 1 Diabetes
    Martin Dodek, Eva Miklovičová
    IEEE Access.2024; 12: 35899.     CrossRef
  • Comparison between a tubeless, on-body automated insulin delivery system and a tubeless, on-body sensor-augmented pump in type 1 diabetes: a multicentre randomised controlled trial
    Ji Yoon Kim, Sang-Man Jin, Eun Seok Kang, Soo Heon Kwak, Yeoree Yang, Jee Hee Yoo, Jae Hyun Bae, Jun Sung Moon, Chang Hee Jung, Ji Cheol Bae, Sunghwan Suh, Sun Joon Moon, Sun Ok Song, Suk Chon, Jae Hyeon Kim
    Diabetologia.2024; 67(7): 1235.     CrossRef
  • Prevention and treatment of type 1 diabetes: in search of the ideal combination therapy targeting multiple immunometabolic pathways
    Marcelo Maia Pinheiro, Felipe Moura Maia Pinheiro, Maria Luisa Garo, Donatella Pastore, Francesca Pacifici, Camillo Ricordi, David Della-Morte, Marco Infante
    Metabolism and Target Organ Damage.2024;[Epub]     CrossRef
  • Mitigating diabetes associated with reactive oxygen species (ROS) and protein aggregation through pharmacological interventions
    Giulia Bennici, Hanan Almahasheer, Mawadda Alghrably, Daniela Valensin, Arian Kola, Chrysoula Kokotidou, Joanna Lachowicz, Mariusz Jaremko
    RSC Advances.2024; 14(25): 17448.     CrossRef
  • Real‐world glycaemic outcomes of automated insulin delivery in type 1 diabetes: A meta‐analysis
    Qin Yang, Baoqi Zeng, Jiayi Hao, Qingqing Yang, Feng Sun
    Diabetes, Obesity and Metabolism.2024; 26(9): 3753.     CrossRef
  • Efficacy of advanced hybrid closed loop systems in cystic fibrosis related diabetes: a pilot study
    Marta Bassi, Daniele Franzone, Francesca Dufour, Giordano Spacco, Federico Cresta, Giuseppe d’Annunzio, Giacomo Tantari, Maria Grazia Calevo, Carlo Castellani, Nicola Minuto, Rosaria Casciaro
    Frontiers in Endocrinology.2024;[Epub]     CrossRef
  • Emerging Technologies in Endocrine Drug Delivery: Innovations for Improved Patient Care
    Mahvish Renzu, Carly Hubers, Kendall Conway, Viktoriya Gibatova, Vidhi Mehta, Wael Taha
    Cureus.2024;[Epub]     CrossRef
  • A stochastic model-based control methodology for glycemic management in the intensive care unit
    Melike Sirlanci, George Hripcsak, Cecilia C. Low Wang, J. N. Stroh, Yanran Wang, Tellen D. Bennett, Andrew M. Stuart, David J. Albers
    Frontiers in Medical Engineering.2024;[Epub]     CrossRef
  • Advances in Type 1 Diabetes Mellitus Management in Children
    Mridu Bahal, Vineeta Pande, Jasleen Dua, Shailaja Mane
    Cureus.2024;[Epub]     CrossRef
  • Expansion of the Pancreas Transplant Recipient Pool: Appropriate for Most or Are There Limits?
    Jonathan A. Fridell, Robert J. Stratta
    Current Transplantation Reports.2024; 11(4): 276.     CrossRef
  • Reinforcement Learning: A Paradigm Shift in Personalized Blood Glucose Management for Diabetes
    Lehel Dénes-Fazakas, László Szilágyi, Levente Kovács, Andrea De Gaetano, György Eigner
    Biomedicines.2024; 12(9): 2143.     CrossRef
  • Diabetes Management: Herbal Remedies and Emerging Therapies
    Pratik Kumar Vishwakarma, Ankita Moharana, Snigdha Rani Behra, Priyabati Choudhury, Sonali Jayronia, Shivendra Mani Tripathi
    Current Nutraceuticals.2024;[Epub]     CrossRef
  • Impact of Hypoglycemia on Glucose Variability over Time for Individuals with Open-Source Automated Insulin Delivery Systems
    Arsalan Shahid, Dana M. Lewis
    Diabetology.2024; 5(5): 514.     CrossRef
  • Optimal model-based insulin dosing strategy with offline and online optimization
    Martin Dodek, Eva Miklovičová, Miroslav Halás
    Informatics in Medicine Unlocked.2024; 51: 101594.     CrossRef
  • Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care
    Neha Ghosh, Saurabh Verma
    Current Medical Research and Opinion.2024; 40(12): 2095.     CrossRef
  • A novel pulse-modulated closed-loop artificial pancreas based on intravenous administration of insulin and glucagon
    Simon L. Goede, Victor H. Snels, Willem-Jan W. J. H. Berghuis, Jan P. C. Bernards, Urs Wyder
    Scientific Reports.2024;[Epub]     CrossRef
  • 100 Years of insulin: A chemical engineering perspective
    B. Wayne Bequette
    Korean Journal of Chemical Engineering.2023; 40(1): 1.     CrossRef
  • Efficacy of intermittent short‐term use of a real‐time continuous glucose monitoring system in non‐insulin–treated patients with type 2 diabetes: A randomized controlled trial
    Sun Joon Moon, Kyung‐Soo Kim, Woo Je Lee, Mi Yeon Lee, Robert Vigersky, Cheol‐Young Park
    Diabetes, Obesity and Metabolism.2023; 25(1): 110.     CrossRef
  • Identifiable prediction animal model for the bi-hormonal intraperitoneal artificial pancreas
    Karim Davari Benam, Hasti Khoshamadi, Marte Kierulf Åm, Øyvind Stavdahl, Sebastien Gros, Anders Lyngvi Fougner
    Journal of Process Control.2023; 121: 13.     CrossRef
  • Advances in Continuous Glucose Monitoring and Integrated Devices for Management of Diabetes with Insulin-Based Therapy: Improvement in Glycemic Control
    Jee Hee Yoo, Jae Hyeon Kim
    Diabetes & Metabolism Journal.2023; 47(1): 27.     CrossRef
  • CGM accuracy: Contrasting CE marking with the governmental controls of the USA (FDA) and Australia (TGA): A narrative review
    John S Pemberton, Emma G Wilmot, Katharine Barnard‐Kelly, Lalantha Leelarathna, Nick Oliver, Tabitha Randell, Craig E Taplin, Pratik Choudhary, Peter Adolfsson
    Diabetes, Obesity and Metabolism.2023; 25(4): 916.     CrossRef
  • Evaluation of awareness and attitude of paediatric nursing students, nurses, and adolescents regarding type one diabetes advanced devices and virtual nursing
    Howaida Moawad Ahmed Ali
    Kontakt.2023; 25(2): 100.     CrossRef
  • Predicting the output error of the suboptimal state estimator to improve the performance of the MPC-based artificial pancreas
    Martin Dodek, Eva Miklovičová
    Control Theory and Technology.2023; 21(4): 541.     CrossRef
  • A Markov Model of Gap Occurrence in Continuous Glucose Monitoring Data for Realistic in Silico Clinical Trials
    Martina Vettoretti, Martina Drecogna, Simone Del Favero, Andrea Facchinetti, Giovanni Sparacino
    Computer Methods and Programs in Biomedicine.2023; 240: 107700.     CrossRef
  • Drug delivery breakthrough technologies – A perspective on clinical and societal impact
    Beate Bittner, Manuel Sánchez-Félix, Dennis Lee, Athanas Koynov, Joshua Horvath, Felix Schumacher, Simon Matoori
    Journal of Controlled Release.2023; 360: 335.     CrossRef
  • Importance of continuous glucose monitoring in the treatment of diabetes mellitus
    Sun Joon Moon, Won-Young Lee
    Journal of the Korean Medical Association.2023; 66(7): 432.     CrossRef
  • Constrained Versus Unconstrained Model Predictive Control for Artificial Pancreas
    Chiara Toffanin, Lalo Magni
    IEEE Transactions on Control Systems Technology.2023; 31(5): 2288.     CrossRef
  • Intelligent Insulin vs. Artificial Intelligence for Type 1 Diabetes: Will the Real Winner Please Stand Up?
    Valentina Maria Cambuli, Marco Giorgio Baroni
    International Journal of Molecular Sciences.2023; 24(17): 13139.     CrossRef
  • Artificial Intelligence in Efficient Diabetes Care
    Gopal Bhagwan Khodve, Sugato Banerjee
    Current Diabetes Reviews.2023;[Epub]     CrossRef
  • The artificial pancreas: two alternative approaches to achieve a fully closed-loop system with optimal glucose control
    M. K. Åm, I. A. Teigen, M. Riaz, A. L. Fougner, S. C. Christiansen, S. M. Carlsen
    Journal of Endocrinological Investigation.2023; 47(3): 513.     CrossRef
  • Multivariable Automated Insulin Delivery System for Handling Planned and Spontaneous Physical Activities
    Mohammad Reza Askari, Mohammad Ahmadasas, Andrew Shahidehpour, Mudassir Rashid, Laurie Quinn, Minsun Park, Ali Cinar
    Journal of Diabetes Science and Technology.2023; 17(6): 1456.     CrossRef
  • Advanced Technology (Continuous Glucose Monitoring and Advanced Hybrid Closed-Loop Systems) in Diabetes from the Perspective of Gender Differences
    Maria Grazia Nuzzo, Marciano Schettino
    Diabetology.2023; 4(4): 519.     CrossRef
  • Artificial Pancreas under a Zone Model Predictive Control based on Gaussian Process models: toward the personalization of the closed loop
    Marco Polver, Beatrice Sonzogni, Mirko Mazzoleni, Fabio Previdi, Antonio Ferramosca
    IFAC-PapersOnLine.2023; 56(2): 9642.     CrossRef
  • Personalized Constrained MPC for glucose regulation
    Chiara Toffanin, Lalo Magni
    IFAC-PapersOnLine.2023; 56(2): 9648.     CrossRef
  • Automated Insulin Delivery Systems in Children and Adolescents With Type 1 Diabetes: A Systematic Review and Meta-analysis of Outpatient Randomized Controlled Trials
    Baoqi Zeng, Le Gao, Qingqing Yang, Hao Jia, Feng Sun
    Diabetes Care.2023; 46(12): 2300.     CrossRef
  • Novel Glycemic Index Based on Continuous Glucose Monitoring to Predict Poor Clinical Outcomes in Critically Ill Patients: A Pilot Study
    Eun Yeong Ha, Seung Min Chung, Il Rae Park, Yin Young Lee, Eun Young Choi, Jun Sung Moon
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Dual‐hormone artificial pancreas for glucose control in type 1 diabetes: A meta‐analysis
    Baoqi Zeng, Hao Jia, Le Gao, Qingqing Yang, Kai Yu, Feng Sun
    Diabetes, Obesity and Metabolism.2022; 24(10): 1967.     CrossRef
  • Dual-Hormone Insulin-and-Pramlintide Artificial Pancreas for Type 1 Diabetes: A Systematic Review
    Alezandra Torres-Castaño, Amado Rivero-Santana, Lilisbeth Perestelo-Pérez, Andrea Duarte-Díaz, Analia Abt-Sacks, Vanesa Ramos-García, Yolanda Álvarez-Pérez, Ana M. Wäagner, Mercedes Rigla, Pedro Serrano-Aguilar
    Applied Sciences.2022; 12(20): 10262.     CrossRef
  • History of insulin treatment of pediatric patients with diabetes in Korea
    Jae Hyun Kim, Choong Ho Shin, Sei Won Yang
    Annals of Pediatric Endocrinology & Metabolism.2021; 26(4): 237.     CrossRef
Short Communication
Type 1 Diabetes
Article image
Real-World Analysis of Therapeutic Outcome in Type 1 Diabetes Mellitus at a Tertiary Care Center
Antonia Kietaibl, Michaela Riedl, Latife Bozkurt
Diabetes Metab J. 2022;46(1):149-153.   Published online July 6, 2021
DOI: https://doi.org/10.4093/dmj.2020.0267
  • 5,555 View
  • 160 Download
AbstractAbstract PDFPubReader   ePub   
Insulin replacement in type 1 diabetes mellitus (T1DM) needs intensified treatment, which can either be performed by multiple daily injections (MDI) or continuous subcutaneous insulin infusion (CSII). This retrospective analysis of a real-world scenario aimed to evaluate whether glycaemic and cardiovascular risk factors could be controlled with CSII outclass MDI as suggested by recent evidence. Data from patients with either insulin pump (n=68) or injection (n=224) therapy at an Austrian tertiary care centre were analysed between January 2016 and December 2017. There were no significant differences with regard to the latest glycosylated hemoglobin, cardiovascular risk factor control or diabetes-associated late complications. Hypoglycaemia was less frequent (P<0.001), sensor-augmented therapy was more common (P=0.003) and mean body mass index (BMI) was higher (P=0.002) with CSII treatment. This retrospective analysis of real-world data in T1DM did not demonstrate the superiority of insulin pump treatment with regard to glycaemic control or cardiovascular risk factor control.
Original Articles
Drug/Regimen
Article image
Effects of Teneligliptin on HbA1c levels, Continuous Glucose Monitoring-Derived Time in Range and Glycemic Variability in Elderly Patients with T2DM (TEDDY Study)
Ji Cheol Bae, Soo Heon Kwak, Hyun Jin Kim, Sang-Yong Kim, You-Cheol Hwang, Sunghwan Suh, Bok Jin Hyun, Ji Eun Cha, Jong Chul Won, Jae Hyeon Kim
Diabetes Metab J. 2022;46(1):81-92.   Published online June 16, 2021
DOI: https://doi.org/10.4093/dmj.2021.0016
  • 9,908 View
  • 474 Download
  • 6 Web of Science
  • 6 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
To evaluate the effects of teneligliptin on glycosylated hemoglobin (HbA1c) levels, continuous glucose monitoring (CGM)-derived time in range, and glycemic variability in elderly type 2 diabetes mellitus patients.
Methods
This randomized, double-blinded, placebo-controlled study was conducted in eight centers in Korea (clinical trial registration number: NCT03508323). Sixty-five participants aged ≥65 years, who were treatment-naïve or had been treated with stable doses of metformin, were randomized at a 1:1 ratio to receive 20 mg of teneligliptin (n=35) or placebo (n=30) for 12 weeks. The main endpoints were the changes in HbA1c levels from baseline to week 12, CGM metrics-derived time in range, and glycemic variability.
Results
After 12 weeks, a significant reduction (by 0.84%) in HbA1c levels was observed in the teneligliptin group compared to that in the placebo group (by 0.08%), with a between-group least squares mean difference of –0.76% (95% confidence interval [CI], –1.08 to –0.44). The coefficient of variation, standard deviation, and mean amplitude of glycemic excursion significantly decreased in participants treated with teneligliptin as compared to those in the placebo group. Teneligliptin treatment significantly decreased the time spent above 180 or 250 mg/dL, respectively, without increasing the time spent below 70 mg/dL. The mean percentage of time for which glucose levels remained in the 70 to 180 mg/dL time in range (TIR70–180) at week 12 was 82.0%±16.0% in the teneligliptin group, and placebo-adjusted change in TIR70–180 from baseline was 13.3% (95% CI, 6.0 to 20.6).
Conclusion
Teneligliptin effectively reduced HbA1c levels, time spent above the target range, and glycemic variability, without increasing hypoglycemia in our study population.

Citations

Citations to this article as recorded by  
  • Time in range—A new gold standard in type 2 diabetes research?
    Ashni Goshrani, Rose Lin, David O'Neal, Elif I. Ekinci
    Diabetes, Obesity and Metabolism.2025;[Epub]     CrossRef
  • Comparison of teneligliptin and other gliptin-based regimens in addressing insulin resistance and glycemic control in type 2 diabetic patients: a cross-sectional study
    Harmanjit Singh, Ravi Rohilla, Shivani Jaswal, Mandeep Singla
    Expert Review of Endocrinology & Metabolism.2024; 19(1): 81.     CrossRef
  • Potential approaches using teneligliptin for the treatment of type 2 diabetes mellitus: current status and future prospects
    Harmanjit Singh, Jasbir Singh, Ravneet Kaur Bhangu, Mandeep Singla, Jagjit Singh, Farideh Javid
    Expert Review of Clinical Pharmacology.2023; 16(1): 49.     CrossRef
  • Mechanism of molecular interaction of sitagliptin with human DPP4 enzyme - New Insights
    Michelangelo Bauwelz Gonzatti, José Edvar Monteiro Júnior, Antônio José Rocha, Jonathas Sales de Oliveira, Antônio José de Jesus Evangelista, Fátima Morgana Pio Fonseca, Vânia Marilande Ceccatto, Ariclécio Cunha de Oliveira, José Ednésio da Cruz Freire
    Advances in Medical Sciences.2023; 68(2): 402.     CrossRef
  • A prospective multicentre open label study to assess effect of Teneligliptin on glycemic control through parameters of time in range (TIR) Metric using continuous glucose monitoring (TOP-TIR study)
    Banshi Saboo, Suhas Erande, A.G. Unnikrishnan
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2022; 16(2): 102394.     CrossRef
  • Association between Variability of Metabolic Risk Factors and Cardiometabolic Outcomes
    Min Jeong Park, Kyung Mook Choi
    Diabetes & Metabolism Journal.2022; 46(1): 49.     CrossRef
Drug/Regimen
Article image
Efficacy and Safety of Self-Titration Algorithms of Insulin Glargine 300 units/mL in Individuals with Uncontrolled Type 2 Diabetes Mellitus (The Korean TITRATION Study): A Randomized Controlled Trial
Jae Hyun Bae, Chang Ho Ahn, Ye Seul Yang, Sun Joon Moon, Soo Heon Kwak, Hye Seung Jung, Kyong Soo Park, Young Min Cho
Diabetes Metab J. 2022;46(1):71-80.   Published online June 16, 2021
DOI: https://doi.org/10.4093/dmj.2020.0274
  • 11,502 View
  • 484 Download
  • 2 Web of Science
  • 4 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
To compare the efficacy and safety of two insulin self-titration algorithms, Implementing New Strategies with Insulin Glargine for Hyperglycemia Treatment (INSIGHT) and EDITION, for insulin glargine 300 units/mL (Gla-300) in Korean individuals with uncontrolled type 2 diabetes mellitus (T2DM).
Methods
In a 12-week, randomized, open-label trial, individuals with uncontrolled T2DM requiring basal insulin were randomized to either the INSIGHT (adjusted by 1 unit/day) or EDITION (adjusted by 3 units/week) algorithm to achieve a fasting self-monitoring of blood glucose (SMBG) in the range of 4.4 to 5.6 mmol/L. The primary outcome was the proportion of individuals achieving a fasting SMBG ≤5.6 mmol/L without noct urnal hypoglycemia at week 12.
Results
Of 129 individuals (age, 64.1±9.5 years; 66 [51.2%] women), 65 and 64 were randomized to the INSIGHT and EDITION algorithms, respectively. The primary outcome of achievement was comparable between the two groups (24.6% vs. 23.4%, P=0.876). Compared with the EDITION group, the INSIGHT group had a greater reduction in 7-point SMBG but a similar decrease in fasting plasma glucose and glycosylated hemoglobin. The increment of total daily insulin dose was significantly higher in the INSIGHT group than in the EDITION group (between-group difference: 5.8±2.7 units/day, P=0.033). However, body weight was significantly increased only in the EDITION group (0.6±2.4 kg, P=0.038). There was no difference in the occurrence of hypoglycemia between the two groups. Patient satisfaction was significantly increased in the INSIGHT group (P=0.014).
Conclusion
The self-titration of Gla-300 using the INSIGHT algorithm was effective and safe compared with that using the EDITION algorithm in Korean individuals with uncontrolled T2DM (ClinicalTrials.gov number: NCT03406663).

Citations

Citations to this article as recorded by  
  • Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance
    Camilla Heisel Nyholm Thomsen, Stine Hangaard, Thomas Kronborg, Peter Vestergaard, Ole Hejlesen, Morten Hasselstrøm Jensen
    Journal of Diabetes Science and Technology.2024; 18(5): 1185.     CrossRef
  • Comparative efficacy and safety of weekly tirzepatide versus weekly insulin in type 2 diabetes: A network meta‐analysis of randomized clinical trials
    Hazem Ayesh, Sajida Suhail, Suhail Ayesh, Kevin Niswender
    Diabetes, Obesity and Metabolism.2024; 26(9): 3801.     CrossRef
  • Basal insulin titration algorithms in patients with type 2 diabetes: the simplest is the best (?)
    V.I. Katerenchuk
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine).2023; 19(1): 72.     CrossRef
  • Issues of insulin therapy for type 2 diabetes and ways to solve them
    V.I. Katerenchuk, A.V. Katerenchuk
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine).2023; 19(3): 240.     CrossRef
Review
Type 1 Diabetes
Article image
Time in Range from Continuous Glucose Monitoring: A Novel Metric for Glycemic Control
Jee Hee Yoo, Jae Hyeon Kim
Diabetes Metab J. 2020;44(6):828-839.   Published online December 23, 2020
DOI: https://doi.org/10.4093/dmj.2020.0257
Correction in: Diabetes Metab J 2021;45(5):795
  • 13,081 View
  • 533 Download
  • 47 Web of Science
  • 49 Crossref
AbstractAbstract PDFPubReader   ePub   
Glycosylated hemoglobin (HbA1c) has been the sole surrogate marker for assessing diabetic complications. However, consistently reported limitations of HbA1c are that it lacks detailed information on short-term glycemic control and can be easily interfered with by various clinical conditions such as anemia, pregnancy, or liver disease. Thus, HbA1c alone may not represent the real glycemic status of a patient. The advancement of continuous glucose monitoring (CGM) has enabled both patients and healthcare providers to monitor glucose trends for a whole single day, which is not possible with HbA1c. This has allowed for the development of core metrics such as time spent in time in range (TIR), hyperglycemia, or hypoglycemia, and glycemic variability. Among the 10 core metrics, TIR is reported to represent overall glycemic control better than HbA1c alone. Moreover, various evidence supports TIR as a predictive marker of diabetes complications as well as HbA1c, as the inverse relationship between HbA1c and TIR reveals. However, there are more complex relationships between HbA1c, TIR, and other CGM metrics. This article provides information about 10 core metrics with particular focus on TIR and the relationships between the CGM metrics for comprehensive understanding of glycemic status using CGM.

Citations

Citations to this article as recorded by  
  • Improved Glycemic Control in Insulin-Treated Individuals With Poorly Controlled Type 2 Diabetes Through Combined Structured Education With Real-Time Continuous Glucose Monitoring
    Jee Hee Yoo, Ji Eun Jun, Soo Heon Kwak, Jae Hyeon Kim
    Journal of Diabetes Science and Technology.2025;[Epub]     CrossRef
  • Quantification of the relation between continuous glucose monitoring observation period and the estimation error in assessing long-term glucose regulation
    Stennie Zoet, Thomas Urgert, Anouk Veldhuis, Bert-Jan van Beijnum, Gozewijn D Laverman
    BMJ Open Diabetes Research & Care.2025; 13(1): e004768.     CrossRef
  • Two-week continuous glucose monitoring-derived metrics and degree of hepatic steatosis: a cross-sectional study among Chinese middle-aged and elderly participants
    Haili Zhong, Ke Zhang, Lishan Lin, Yan Yan, Luqi Shen, Hanzu Chen, Xinxiu Liang, Jingnan Chen, Zelei Miao, Ju-Sheng Zheng, Yu-ming Chen
    Cardiovascular Diabetology.2024;[Epub]     CrossRef
  • Acute and Chronic Adverse Outcomes of Type 1 Diabetes
    Rachel Longendyke, Jody B. Grundman, Shideh Majidi
    Endocrinology and Metabolism Clinics of North America.2024; 53(1): 123.     CrossRef
  • La plongée sous-marine en scaphandre autonome avec un diabète de type 1. Une belle histoire du dernier millénaire
    Lise Dufaitre Patouraux, Agnès Sola-Gazagnes, Boris Lormeau, Corinne Lormeau
    Médecine des Maladies Métaboliques.2024; 18(1): 67.     CrossRef
  • S100A9 exerts insulin-independent antidiabetic and anti-inflammatory effects
    Gloria Ursino, Giulia Lucibello, Pryscila D. S. Teixeira, Anna Höfler, Christelle Veyrat-Durebex, Soline Odouard, Florian Visentin, Luca Galgano, Emmanuel Somm, Claudia R. Vianna, Ariane Widmer, François R. Jornayvaz, Andreas Boland, Giorgio Ramadori, Rob
    Science Advances.2024;[Epub]     CrossRef
  • Hybrid Closed-Loop Versus Manual Insulin Delivery in Adults With Type 1 Diabetes: A Post Hoc Analysis Using the Glycemia Risk Index
    Melissa H. Lee, Sara Vogrin, Timothy W. Jones, David N. O’Neal
    Journal of Diabetes Science and Technology.2024; 18(4): 764.     CrossRef
  • Clinically relevant stratification of patients with type 2 diabetes by using continuous glucose monitoring data
    Xiaopeng Shao, Jingyi Lu, Rui Tao, Liang Wu, Yaxin Wang, Wei Lu, Hongru Li, Jian Zhou, Xia Yu
    Diabetes, Obesity and Metabolism.2024; 26(6): 2082.     CrossRef
  • Effects of a 2-Week Kinect-Based Mixed-Reality Exercise Program on Prediabetes: A Pilot Trial during COVID-19
    So Young Ahn, Si Woo Lee, Hye Jung Shin, Won Jae Lee, Jun Hyeok Kim, Hyun-Jun Kim, Wook Song
    Journal of Obesity & Metabolic Syndrome.2024; 33(1): 54.     CrossRef
  • Continuous glucose monitoring with structured education in adults with type 2 diabetes managed by multiple daily insulin injections: a multicentre randomised controlled trial
    Ji Yoon Kim, Sang-Man Jin, Kang Hee Sim, Bo-Yeon Kim, Jae Hyoung Cho, Jun Sung Moon, Soo Lim, Eun Seok Kang, Cheol-Young Park, Sin Gon Kim, Jae Hyeon Kim
    Diabetologia.2024; 67(7): 1223.     CrossRef
  • Comparison between a tubeless, on-body automated insulin delivery system and a tubeless, on-body sensor-augmented pump in type 1 diabetes: a multicentre randomised controlled trial
    Ji Yoon Kim, Sang-Man Jin, Eun Seok Kang, Soo Heon Kwak, Yeoree Yang, Jee Hee Yoo, Jae Hyun Bae, Jun Sung Moon, Chang Hee Jung, Ji Cheol Bae, Sunghwan Suh, Sun Joon Moon, Sun Ok Song, Suk Chon, Jae Hyeon Kim
    Diabetologia.2024; 67(7): 1235.     CrossRef
  • Psychometric Properties of the Automated Insulin Delivery: Benefits and Burdens Scale for Adults with Type 1 Diabetes
    Jenna B. Shapiro, Anthony T. Vesco, Michael S. Carroll, Jill Weissberg-Benchell
    Diabetes Technology & Therapeutics.2024; 26(11): 842.     CrossRef
  • Expert Consensus on Dipeptidyl Peptidase-4 Inhibitor-Based Therapies in the Modern Era of Type 2 Diabetes Mellitus Management in India
    Sanjay Kalra, Saptarshi Bhattacharya, A Dhingra, Sambit Das, Nitin Kapoor, Shehla Shaikh, Vivek Kolapkar, R V Lokesh Kumar, Kamlesh Patel, Rahul Kotwal
    Cureus.2024;[Epub]     CrossRef
  • Optimal hyperglycemia thresholds in patients undergoing chemotherapy: a cross sectional study of oncologists’ practices
    Teresa M. Salgado, Poorva B. Birari, Mona Alshahawey, Erin Hickey Zacholski, Emily Mackler, Tonya M. Buffington, Kerri T. Musselman, William J. Irvin, Jennifer M. Perkins, Trang N. Le, Dave L. Dixon, Karen B. Farris, Vanessa B. Sheppard, Resa M. Jones
    Supportive Care in Cancer.2024;[Epub]     CrossRef
  • Glycemic Risk Index in a Cohort of Patients with Type 1 Diabetes Mellitus Stratified by the Coefficient of Variation: A Real-Life Study
    Sandra Herranz-Antolín, Clara Coton-Batres, María Covadonga López-Virgos, Verónica Esteban-Monge, Visitación Álvarez-de Frutos, Leonel Pekarek, Miguel Torralba
    Diabetes Technology & Therapeutics.2024; 26(12): 960.     CrossRef
  • Diabetes Management in Transition: Market Insights and Technological Advancements in CGM and Insulin Delivery
    Tae Sang Yu, Soojeong Song, Junwoo Yea, Kyung‐In Jang
    Advanced Sensor Research.2024;[Epub]     CrossRef
  • Association between glucose levels of children with type 1 diabetes and parental economic status in mobile health application
    Wen-Hao Zhang, Chao-Fan Wang, Hao Wang, Jie Tang, Hong-Qiang Zhang, Jiang-Yu Zhu, Xue-Ying Zheng, Si-Hui Luo, Yu Ding
    World Journal of Diabetes.2024; 15(7): 1477.     CrossRef
  • Differences Between Glycated Hemoglobin and Glucose Management Indicator in Real-Time and Intermittent Scanning Continuous Glucose Monitoring in Adults With Type 1 Diabetes
    Jee Hee Yoo, Sun Joon Moon, Cheol-Young Park, Jae Hyeon Kim
    Journal of Diabetes Science and Technology.2024;[Epub]     CrossRef
  • Impact of diverse aerobic exercise plans on glycemic control, lipid levels, and functional activity in stroke patients with type 2 diabetes mellitus
    Kangcheng Chen, Yulong Wang, Dongxia Li, Jun Li, Yong Huang, Meiling Huang, Haifeng Ma
    Frontiers in Endocrinology.2024;[Epub]     CrossRef
  • Reinforcement Learning: A Paradigm Shift in Personalized Blood Glucose Management for Diabetes
    Lehel Dénes-Fazakas, László Szilágyi, Levente Kovács, Andrea De Gaetano, György Eigner
    Biomedicines.2024; 12(9): 2143.     CrossRef
  • A Review of Third-Trimester Complications in Pregnancies Complicated by Diabetes Mellitus
    Shaun R. Welsey, Jessica Day, Scott Sullivan, Sarah D. Crimmins
    American Journal of Perinatology.2024;[Epub]     CrossRef
  • Anagliptin twice‐daily regimen improves glycaemic variability in subjects with type 2 diabetes: A double‐blind, randomized controlled trial
    Yong‐ho Lee, Doo‐Man Kim, Jae Myung Yu, Kyung Mook Choi, Sin Gon Kim, Kang Seo Park, Hyun‐Shik Son, Choon Hee Chung, Kyu Jeung Ahn, Soon Hee Lee, Ki‐Ho Song, Su Kyoung Kwon, Hyeong Kyu Park, Kyu Chang Won, Hak Chul Jang
    Diabetes, Obesity and Metabolism.2023; 25(5): 1174.     CrossRef
  • Advances in Continuous Glucose Monitoring and Integrated Devices for Management of Diabetes with Insulin-Based Therapy: Improvement in Glycemic Control
    Jee Hee Yoo, Jae Hyeon Kim
    Diabetes & Metabolism Journal.2023; 47(1): 27.     CrossRef
  • Status of continuous glucose monitoring use and management in tertiary hospitals of China: a cross-sectional study
    Liping Chen, Xiaoqin Liu, Qin Lin, Hongmei Dai, Yong Zhao, Zumin Shi, Liping Wu
    BMJ Open.2023; 13(2): e066801.     CrossRef
  • Real-world outcomes of continuous glucose monitoring in adults with diabetes mellitus attending an Irish tertiary hospital
    Aoife Courtney, Diarmuid Smith, Hannah Forde
    Irish Journal of Medical Science (1971 -).2023; 192(6): 2763.     CrossRef
  • Insight into continuous glucose monitoring: from medical basics to commercialized devices
    Ayman Chmayssem, Małgorzata Nadolska, Emily Tubbs, Kamila Sadowska, Pankaj Vadgma, Isao Shitanda, Seiya Tsujimura, Youssef Lattach, Martin Peacock, Sophie Tingry, Stéphane Marinesco, Pascal Mailley, Sandrine Lablanche, Pierre Yves Benhamou, Abdelkader Zeb
    Microchimica Acta.2023;[Epub]     CrossRef
  • Efficacy of polyethylene glycol loxenatide versus insulin glargine on glycemic control in patients with type 2 diabetes: a randomized, open-label, parallel-group trial
    Shuo Zhang, Chuanyan Zhang, Jingxian Chen, Feiying Deng, Zezhen Wu, Dan Zhu, Fengwu Chen, Yale Duan, Yue Zhao, Kaijian Hou
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • Impact of continuous glucose monitoring on glycemic control and its derived metrics in type 1 diabetes: a longitudinal study
    So Hyun Cho, Seohyun Kim, You-Bin Lee, Sang-Man Jin, Kyu Yeon Hur, Gyuri Kim, Jae Hyeon Kim
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Association Between Continuous Glucose Monitoring-Derived Glycemia Risk Index and Albuminuria in Type 2 Diabetes
    Jee Hee Yoo, Ji Yoon Kim, Jae Hyeon Kim
    Diabetes Technology & Therapeutics.2023; 25(10): 726.     CrossRef
  • Acute Glycemic Variability and Early Outcomes After Cardiac Surgery: A Meta-Analysis
    Shuo Chang, Mian Xu, Yu Wang, Yanbo Zhang
    Hormone and Metabolic Research.2023; 55(11): 771.     CrossRef
  • Comparison of Glycemia Risk Index with Time in Range for Assessing Glycemic Quality
    Ji Yoon Kim, Jee Hee Yoo, Jae Hyeon Kim
    Diabetes Technology & Therapeutics.2023; 25(12): 883.     CrossRef
  • Correlação entre tempo no alvo e hemoglobina glicada de pessoas com diabetes mellitus: revisão sistemática
    Rafael Aparecido Dias Lima, Daiane Rubinato Fernandes, Rute Aparecida Casas Garcia, Lucas Ariel da Rocha Carvalho, Renata Cristina de Campos Pereira Silveira, Carla Regina de Souza Teixeira
    Revista Latino-Americana de Enfermagem.2023;[Epub]     CrossRef
  • Correlación entre tiempo en rango y hemoglobina glicosilada en personas con diabetes mellitus: revisión sistemática
    Rafael Aparecido Dias Lima, Daiane Rubinato Fernandes, Rute Aparecida Casas Garcia, Lucas Ariel da Rocha Carvalho, Renata Cristina de Campos Pereira Silveira, Carla Regina de Souza Teixeira
    Revista Latino-Americana de Enfermagem.2023;[Epub]     CrossRef
  • Correlation between time on target and glycated hemoglobin in people with diabetes mellitus: systematic review
    Rafael Aparecido Dias Lima, Daiane Rubinato Fernandes, Rute Aparecida Casas Garcia, Lucas Ariel da Rocha Carvalho, Renata Cristina de Campos Pereira Silveira, Carla Regina de Souza Teixeira
    Revista Latino-Americana de Enfermagem.2023;[Epub]     CrossRef
  • Smart Insulin Pen: Managing Insulin Therapy for People with Diabetes in the Digital Era
    Jee Hee Yoo, Jae Hyeon Kim
    The Journal of Korean Diabetes.2023; 24(4): 190.     CrossRef
  • Novel Glycemic Index Based on Continuous Glucose Monitoring to Predict Poor Clinical Outcomes in Critically Ill Patients: A Pilot Study
    Eun Yeong Ha, Seung Min Chung, Il Rae Park, Yin Young Lee, Eun Young Choi, Jun Sung Moon
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Hypoglycemic agents and glycemic variability in individuals with type 2 diabetes: A systematic review and network meta-analysis
    SuA Oh, Sujata Purja, Hocheol Shin, Minji Kim, Eunyoung Kim
    Diabetes and Vascular Disease Research.2022;[Epub]     CrossRef
  • Advanced Glycation End Products and Their Effect on Vascular Complications in Type 2 Diabetes Mellitus
    Jeongmin Lee, Jae-Seung Yun, Seung-Hyun Ko
    Nutrients.2022; 14(15): 3086.     CrossRef
  • Influence of dipeptidyl peptidase-4 inhibitors on glycemic variability in patients with type 2 diabetes: A meta-analysis of randomized controlled trials
    Shangyu Chai, Ruya Zhang, Ye Zhang, Richard David Carr, Yiman Zheng, Swapnil Rajpathak, Miao Yu
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Glucose Profiles Assessed by Intermittently Scanned Continuous Glucose Monitoring System during the Perioperative Period of Metabolic Surgery
    Kyuho Kim, Sung Hee Choi, Hak Chul Jang, Young Suk Park, Tae Jung Oh
    Diabetes & Metabolism Journal.2022; 46(5): 713.     CrossRef
  • Deterioration in glycemic control on schooldays among children and adolescents with type 1 diabetes: A continuous glucose monitoring-based study
    Yu Ding, Wenhao Zhang, Xiumei Wu, Tian Wei, Xulin Wang, Xueying Zheng, Sihui Luo
    Frontiers in Pediatrics.2022;[Epub]     CrossRef
  • Effect of repeated bolus and continuous glucose infusion on a panel of circulating biomarkers in healthy volunteers
    Roland Feldbauer, Matthias Wolfgang Heinzl, Carmen Klammer, Michael Resl, Johannes Pohlhammer, Klemens Rosenberger, Verena Almesberger, Florian Obendorf, Lukas Schinagl, Thomas Wagner, Margot Egger, Benjamin Dieplinger, Martin Clodi, Stephen L. Atkin
    PLOS ONE.2022; 17(12): e0279308.     CrossRef
  • Relationship between glycemic intraday variations evaluated in continuous glucose monitoring and HbA1c variability in type 2 diabetes: pilot study
    Akemi Tokutsu, Yosuke Okada, Keiichi Torimoto, Yoshiya Tanaka
    Diabetology & Metabolic Syndrome.2021;[Epub]     CrossRef
  • Time-in-range for monitoring glucose control: Is it time for a change?
    Virginia Bellido, Pedro José Pinés-Corrales, Rocío Villar-Taibo, Francisco Javier Ampudia-Blasco
    Diabetes Research and Clinical Practice.2021; 177: 108917.     CrossRef
  • Glucose Management Indicator for People with Type 1 Asian Diabetes Is Different from That of the Published Equation: Differences by Glycated Hemoglobin Distribution
    Jee Hee Yoo, Seung Hee Yang, Gyuri Kim, Jae Hyeon Kim
    Diabetes Technology & Therapeutics.2021;[Epub]     CrossRef
  • Health-Related Quality of Life, Family Conflicts and Fear of Injecting: Perception Differences between Preadolescents and Adolescents with Type 1 Diabetes and Their Mothers
    Marta Tremolada, Maria Cusinato, Sabrina Bonichini, Arianna Fabris, Claudia Gabrielli, Carlo Moretti
    Behavioral Sciences.2021; 11(7): 98.     CrossRef
  • Daytime Glycemic Variability and Frailty in Older Patients with Diabetes: a Pilot Study Using Continuous Glucose Monitoring
    Seung Min Chung, Yun Hee Lee, Chang Oh Kim, Ji Yeon Lee, Sang-Man Jin, Seung-Hyun Yoo, Jun Sung Moon, Kwang Joon Kim
    Journal of Korean Medical Science.2021;[Epub]     CrossRef
  • Benefits of a Switch from Intermittently Scanned Continuous Glucose Monitoring (isCGM) to Real-Time (rt) CGM in Diabetes Type 1 Suboptimal Controlled Patients in Real-Life: A One-Year Prospective Study §
    Yannis Préau, Sébastien Galie, Pauline Schaepelynck, Martine Armand, Denis Raccah
    Sensors.2021; 21(18): 6131.     CrossRef
  • Recent Advances of Integrative Bio-Omics Technologies to Improve Type 1 Diabetes (T1D) Care
    Nisha Karwal, Megan Rodrigues, David D. Williams, Ryan J. McDonough, Diana Ferro
    Applied Sciences.2021; 11(24): 11602.     CrossRef
Original Article
Basic Research
Article image
Role of Intestinal Microbiota in Metabolism of Voglibose In Vitro and In Vivo
Mahesh Raj Nepal, Mi Jeong Kang, Geon Ho Kim, Dong Ho Cha, Ju-Hyun Kim, Tae Cheon Jeong
Diabetes Metab J. 2020;44(6):908-918.   Published online April 6, 2020
DOI: https://doi.org/10.4093/dmj.2019.0147
  • 7,084 View
  • 136 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background

Voglibose, an α-glucosidase inhibitor, inhibits breakdown of complex carbohydrates into simple sugar units in intestine. Studies showed that voglibose metabolism in the liver might be negligible due to its poor intestinal absorption. Numerous microorganisms live in intestine and have several roles in metabolism and detoxification of various xenobiotics. Due to the limited information, the possible metabolism of voglibose by intestinal microbiota was investigated in vitro and in vivo.

Methods

For the in vitro study, different concentrations of voglibose were incubated with intestinal contents, prepared from both vehicle- and antibiotics-treated mice, to determine the decreased amount of voglibose over time by using liquid chromatography-mass spectrometry. Similarly, in vivo pharmacodynamic effect of voglibose was determined following the administration of voglibose and starch in vehicle- and antibiotic-pretreated non-diabetic and diabetic mice, by measuring the modulatory effects of voglibose on blood glucose levels.

Results

The in vitro results indicated that the remaining voglibose could be significantly decreased when incubated with the intestinal contents from normal mice compared to those from antibiotic-treated mice, which had less enzyme activities. The in vivo results showed that the antibiotic pretreatment resulted in reduced metabolism of voglibose. This significantly lowered blood glucose levels in antibiotic-pretreated mice compared to the control animals.

Conclusion

The present results indicate that voglibose would be metabolized by the intestinal microbiota, and that this metabolism might be pharmacodynamically critical in lowering blood glucose levels in mice.

Citations

Citations to this article as recorded by  
  • A Novel Stability Indicating Analytical Development and Validation of an RP-HPLC Assay Method for the Quantification of Voglibose in Bulk and its Formulation
    Md. Nazmul Sardar, Ekhlass Uddin, Md. Shahin Reza, Shajahan Talukdar Sunny, Md. Faysal Khan Shuvo, Md. Mamun Hossain, Md. Faruk Hossen, Md. Ali Asraf, Md. Kudrat-E-Zahan
    Asian Journal of Research in Chemistry.2024; : 344.     CrossRef
  • Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment
    Liyang Jia, Shiqiong Huang, Boyu Sun, Yongguang Shang, Chunsheng Zhu
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Phenolics from endophytic fungi as natural α-glucosidase inhibitors: A comprehensive review
    Muhammad Imran Tousif, Saba Tauseef, Sadeer Nabeelah, Jugreet Sharmeen, Gokhan Zengin, Lesetja Legoabe, Muhammad Imran, Mohamad Fawzi Mahomoodally
    Journal of Molecular Structure.2023; 1291: 135852.     CrossRef
  • Ligand-targeted fishing of α-glucosidase inhibitors from Tribulus terrestris L. based on chitosan-functionalized multi-walled carbon nanotubes with immobilized α-glucosidase
    Xin Meng, Hou Zong, Zhong Zheng, Junpeng Xing, Zhiqiang Liu, Fengrui Song, Shu Liu
    Analytical and Bioanalytical Chemistry.2023; 415(14): 2677.     CrossRef
  • Isolation, structure elucidation, and biological activities of sesquiterpenes and phthalides from two edible mushrooms Pleurotus species
    Jewel C De Padua, Emi Fukushima-Sakuno, Kotomi Ueno, Thomas Edison E dela Cruz, Atsushi Ishihara
    Bioscience, Biotechnology, and Biochemistry.2023; 87(12): 1429.     CrossRef
  • Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites
    Dongmei Wang, Jieying Liu, Liyuan Zhou, Qian Zhang, Ming Li, Xinhua Xiao
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • 18:0 Lyso PC, a natural product with potential PPAR-γ agonistic activity, plays hypoglycemic effect with lower liver toxicity and cardiotoxicity in db/db mice
    Yiming Ma, Xinyi Du, Dandan Zhao, Kegong Tang, Xiaona Wang, Shaoting Guo, Xiaobei Li, Song Mei, Na Sun, Jiaqi Liu, Chengyu Jiang
    Biochemical and Biophysical Research Communications.2021; 579: 168.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP