Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
1 "Antiapoptosis"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Article
The Protective Effect of EGCG on INS-1 Cell in the Oxidative Stress and Mechanism.
Mi Kyung Kim, Hye Sook Jung, Chang Shin Yoon, Min Jeong Kwon, Kyung Soo Koh, Byung Doo Rhee, Jeong Hyun Park
Korean Diabetes J. 2008;32(2):121-130.   Published online April 1, 2008
DOI: https://doi.org/10.4093/kdj.2008.32.2.121
  • 2,163 View
  • 25 Download
  • 3 Crossref
AbstractAbstract PDF
BACKGROUND
Oxidative stress is important in both diabetic complications and the development and the progression of type 2 diabetes via the effects on the pancreatic beta-cells. EGCG (epigallocatechin galleate), a major constituent of green tea, has been known to have beneficial effects on various diseases through the mechanisms of antioxidant and cell signaling modulation. But, very small numbers of studies were published about the direct effects of EGCG on the pancreatic beta cell lines. We performed this study to see the protective effect of EGCG on pancreatic beta cell line under H2O2 and the mechanisms of this phenomenon. METHODS: We used INS-1 cells and hydrogen peroxide as an oxidative stressor. Their viabilities were verified by MTT assay and FACS. The activity of glutathione peroxidase was assessed by total glutathione quantification kit. Western blot and semi-quantitative RT-PCR for the catalase, SOD (superoxide dismutase), PI3K and Akt were performed. Functional status of INS-1 cells was tested by GSIS (glucose stimulated insulin secretion). RESULTS: The biological effects of EGCG were different according to its concentrations. 10 micrometer EGCG effectively protected hydrogen peroxide induced damage in INS-1 cells. The expression and the activity of SOD, catalase and the glutathione peroxidase were significantly increased by EGCG. EGCG significantly increased PI3K and Akt activity and its effect was inhibited partially by wortmannin. GSIS was well preserved by EGCG. CONCLUSION: EGCG in low concentration effectively protected INS-1 cells from the oxidative stress through the activation of both antioxidant systems and anti-apoptosis signaling. Further studies will be necessary for the more detailed mechanisms and the clinical implications.

Citations

Citations to this article as recorded by  
  • Suppressive Effects of Epigallocatechin Gallate Pretreatment on the Expression of Inflammatory Cytokines in RAW264.7 Cells Activated by Lipopolysaccharide
    Eun Ji Seo, Jun Go, Ji Eun Kim, Eun Kyoung Koh, Sung Hwa Song, Ji Eun Sung, Chan Kyu Park, Hyun Ah Lee, Dong Seob Kim, Hong Joo Son, Cung Yeoul Lee, Hee Seob Lee, Dae Youn Hwang
    Journal of Life Science.2015; 25(9): 961.     CrossRef
  • The Protective Effects of Chrysanthemum cornarium L. var. spatiosum Extract on HIT-T15 Pancreatic β-Cells against Alloxan-induced Oxidative Stress
    In-Hye Kim, Kang-Jin Cho, Jeong-Sook Ko, Jae-Hyun Kim, Ae-Son Om
    The Korean Journal of Food And Nutrition.2012; 25(1): 123.     CrossRef
  • Protective Effects of Sasa Borealis Leaves Extract on High Glucose-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells
    Ji-Young Hwang, Ji-Sook Han
    Journal of the Korean Society of Food Science and Nutrition.2010; 39(12): 1753.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer