Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
4 "Adipogenesis"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Obesity and Metabolic Syndrome
Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors
Injae Hwang, Jae Bum Kim
Diabetes Metab J. 2019;43(6):752-762.   Published online December 26, 2019
DOI: https://doi.org/10.4093/dmj.2019.0174
  • 9,871 View
  • 203 Download
  • 41 Web of Science
  • 42 Crossref
AbstractAbstract PDFPubReader   

Chronic energy surplus increases body fat, leading to obesity. Since obesity is closely associated with most metabolic complications, pathophysiological roles of adipose tissue in obesity have been intensively studied. White adipose tissue is largely divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). These two white adipose tissues are similar in their appearance and lipid storage functions. Nonetheless, emerging evidence has suggested that SAT and VAT have different characteristics and functional roles in metabolic regulation. It is likely that there are intrinsic differences between VAT and SAT. In diet-induced obese animal models, it has been reported that adipogenic progenitors in VAT rapidly proliferate and differentiate into adipocytes. In obesity, VAT exhibits elevated inflammatory responses, which are less prevalent in SAT. On the other hand, SAT has metabolically beneficial effects. In this review, we introduce recent studies that focus on cellular and molecular components modulating adipogenesis and immune responses in SAT and VAT. Given that these two fat depots show different functions and characteristics depending on the nutritional status, it is feasible to postulate that SAT and VAT have different developmental origins with distinct adipogenic progenitors, which would be a key determining factor for the response and accommodation to metabolic input for energy homeostasis.

Citations

Citations to this article as recorded by  
  • Lipodystrophy as a target to delay premature aging
    Daniela G. Costa, Marisa Ferreira-Marques, Cláudia Cavadas
    Trends in Endocrinology & Metabolism.2024; 35(2): 97.     CrossRef
  • Subcutaneous fat predicts bone metastasis in breast cancer: A novel multimodality-based deep learning model
    Shidi Miao, Haobo Jia, Wenjuan Huang, Ke Cheng, Wenjin Zhou, Ruitao Wang
    Cancer Biomarkers.2024; 39(3): 171.     CrossRef
  • Association between abdominal adiposity and clinical outcomes in patients with acute ischemic stroke
    Kayo Wakisaka, Ryu Matsuo, Fumi Irie, Yoshinobu Wakisaka, Tetsuro Ago, Masahiro Kamouchi, Takanari Kitazono, Masaki Mogi
    PLOS ONE.2024; 19(1): e0296833.     CrossRef
  • NOTCH1 as a Negative Regulator of Avian Adipocyte Differentiation: Implications for Fat Deposition
    Zheng Wang, Yue Su, Mingyu Zhao, Zhenhua Ma, Jianhui Li, Zhuocheng Hou, Huifeng Li
    Animals.2024; 14(4): 585.     CrossRef
  • Visceral adipose of obese mice inhibits endothelial inwardly rectifying K+ channels in a CD36-dependent fashion
    Sabita Rokka, Masoumeh Sadeghinejad, Emma C. Hudgins, Erica J. Johnson, Thanh Nguyen, Ibra S. Fancher
    American Journal of Physiology-Cell Physiology.2024; 326(5): C1543.     CrossRef
  • Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies
    Anna Kostecka, Natalia Kalamon, Aneta Skoniecka, Magdalena Koczkowska, Piotr M. Skowron, Arkadiusz Piotrowski, Michał Pikuła
    Life Sciences.2024; 351: 122761.     CrossRef
  • Dynamics of single-nuclei transcriptomic profiling of adipose tissue from diverse anatomical locations during mouse aging process
    Yujie Wu, Ying Sun, Long Chen, Xingyan Tong, Can Liu, Lu Lu, Rui Zhang, Siyuan Wang, Ziyu Chen, Jiaman Zhang, Ziyin Han, Bo Zeng, Mingzhou Li, Long Jin
    Scientific Reports.2024;[Epub]     CrossRef
  • Glucose metabolism and radiodensity of abdominal adipose tissue: A 5‐year longitudinal study in a large PET cohort
    Kyoungjune Pak, Severi Santavirta, Seunghyeon Shin, Hyun‐Yeol Nam, Sven De Maeyer, Lauri Nummenmaa
    Clinical Endocrinology.2024;[Epub]     CrossRef
  • Green tea beneficial effects involve changes in the profile of immune cells in the adipose tissue of obese mice
    Kaue Tognolli, Victoria Silva, Celso Pereira Batista Sousa-Filho, Claudia Andrea Lima Cardoso, Renata Gorjão, Rosemari Otton
    European Journal of Nutrition.2023; 62(1): 321.     CrossRef
  • Mechanic Insight into the Distinct and Common Roles of Ovariectomy Versus Adrenalectomy on Adipose Tissue Remodeling in Female Mice
    Weihao Chen, Fengyan Meng, Xianyin Zeng, Xiaohan Cao, Guixian Bu, Xiaogang Du, Guozhi Yu, Fanli Kong, Yunkun Li, Tian Gan, Xingfa Han
    International Journal of Molecular Sciences.2023; 24(3): 2308.     CrossRef
  • High-fat diet consumption by male rat offspring of obese mothers exacerbates adipose tissue hypertrophy and metabolic alterations in adult life
    Guadalupe L. Rodríguez-González, Sergio De Los Santos, Dayana Méndez-Sánchez, Luis A. Reyes-Castro, Carlos A. Ibáñez, Patricia Canto, Elena Zambrano
    British Journal of Nutrition.2023; 130(5): 783.     CrossRef
  • Obesity and the risk of cardiometabolic diseases
    Pedro L. Valenzuela, Pedro Carrera-Bastos, Adrián Castillo-García, Daniel E. Lieberman, Alejandro Santos-Lozano, Alejandro Lucia
    Nature Reviews Cardiology.2023; 20(7): 475.     CrossRef
  • Abdominal fat and muscle distributions in different stages of colorectal cancer
    Jun Han, Xinyang Liu, Min Tang, Fan Yang, Zuoyou Ding, Guohao Wu
    BMC Cancer.2023;[Epub]     CrossRef
  • Expression Analysis of hsa-miR-181a-5p, hsa-miR-143-3p, hsa-miR-132-3p and hsa-miR-23a-3p as Biomarkers in Colorectal Cancer—Relationship to the Body Mass Index
    Sofía Elena Tesolato, Daniel González-Gamo, Ana Barabash, Paula Claver, Sofía Cristina de la Serna, Inmaculada Domínguez-Serrano, Jana Dziakova, Carmen de Juan, Antonio José Torres, Pilar Iniesta
    Cancers.2023; 15(13): 3324.     CrossRef
  • Lower subcutaneous fat index predicts bone metastasis in breast cancer
    Wen Wang, Wen-Juan Huang, Ping-Ping Liu, Shuang Fu, Meng-Lin Zhang, Xin Zhang, Rui-Tao Wang, Yuan-Xi Huang
    Cancer Biomarkers.2023; 38(1): 121.     CrossRef
  • RabGAP AS160/TBC1D4 deficiency increases long-chain fatty acid transport but has little additional effect on obesity and metabolic syndrome in ADMSCs-derived adipocytes of morbidly obese women
    Agnieszka Mikłosz, Bartłomiej Łukaszuk, Elżbieta Supruniuk, Kamil Grubczak, Magdalena Kusaczuk, Adrian Chabowski
    Frontiers in Molecular Biosciences.2023;[Epub]     CrossRef
  • White adipose tissue: Distribution, molecular insights of impaired expandability, and its implication in fatty liver disease
    Griselda Rabadán-Chávez, Rocío I. Díaz de la Garza, Daniel A. Jacobo-Velázquez
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.2023; 1869(8): 166853.     CrossRef
  • Histological pattern and gene expression profiling of thyroid tissue in subjects with obesity
    A. Basolo, A. M. Poma, R. Giannini, G. Ceccarini, C. Pelosini, P. Fierabracci, M. U. Castany, S. Bechi Genzano, C. E. Ambrosini, G. Materazzi, L. Chiovato, F. Basolo, F. Santini, L. Torregrossa
    Journal of Endocrinological Investigation.2022; 45(2): 413.     CrossRef
  • Predictors of non-alcoholic fatty liver disease in children
    Menglong Li, Wen Shu, Jiawulan Zunong, Nubiya Amaerjiang, Huidi Xiao, Dan Li, Sten H. Vermund, Yifei Hu
    Pediatric Research.2022; 92(1): 322.     CrossRef
  • Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics
    Hahn Nahmgoong, Yong Geun Jeon, Eun Seo Park, Yoon Ha Choi, Sang Mun Han, Jeu Park, Yul Ji, Jee Hyung Sohn, Ji Seul Han, Ye Young Kim, Injae Hwang, Yun Kyung Lee, Jin Young Huh, Sung Sik Choe, Tae Jung Oh, Sung Hee Choi, Jong Kyoung Kim, Jae Bum Kim
    Cell Metabolism.2022; 34(3): 458.     CrossRef
  • WT1 in Adipose Tissue: From Development to Adult Physiology
    Karin M. Kirschner, Holger Scholz
    Frontiers in Cell and Developmental Biology.2022;[Epub]     CrossRef
  • Shall We Begin the Voyage of Adipose Tissue Exploration?
    Yong Geun Jeon
    Molecules and Cells.2022; 45(6): 362.     CrossRef
  • Mammalian adipogenesis regulator (Areg) cells use retinoic acid signalling to be non‐ and anti‐adipogenic in age‐dependent manner
    Magda Zachara, Pernille Y Rainer, Horia Hashimi, Julie M Russeil, Daniel Alpern, Radiana Ferrero, Maria Litovchenko, Bart Deplancke
    The EMBO Journal.2022;[Epub]     CrossRef
  • The fates of different types of adipose tissue after transplantation in mice
    Shenglu Jiang, Jiayan Lin, Qian Zhang, Yunjun Liao, Feng Lu, Junrong Cai
    The FASEB Journal.2022;[Epub]     CrossRef
  • Analysis of different adipose depot gene expression in cachectic patients with gastric cancer
    Jun Han, Zuoyou Ding, Qiulin Zhuang, Lei Shen, Fan Yang, Szechun Sah, Guohao Wu
    Nutrition & Metabolism.2022;[Epub]     CrossRef
  • Adipose Stromal/Stem Cell-Derived Extracellular Vesicles: Potential Next-Generation Anti-Obesity Agents
    Mariachiara Zuccarini, Patricia Giuliani, Valentina Di Liberto, Monica Frinchi, Francesco Caciagli, Vanni Caruso, Renata Ciccarelli, Giuseppa Mudò, Patrizia Di Iorio
    International Journal of Molecular Sciences.2022; 23(3): 1543.     CrossRef
  • Is There a Link between Obesity Indices and Skin Autofluorescence? A Response from the ILERVAS Project
    Enric Sánchez, Marta Sánchez, Carolina López-Cano, Marcelino Bermúdez-López, José Manuel Valdivielso, Cristina Farràs-Sallés, Reinald Pamplona, Gerard Torres, Dídac Mauricio, Eva Castro, Elvira Fernández, Albert Lecube
    Nutrients.2022; 15(1): 203.     CrossRef
  • Insights behind the Relationship between Colorectal Cancer and Obesity: Is Visceral Adipose Tissue the Missing Link?
    Alice Chaplin, Ramon Maria Rodriguez, Juan José Segura-Sampedro, Aina Ochogavía-Seguí, Dora Romaguera, Gwendolyn Barceló-Coblijn
    International Journal of Molecular Sciences.2022; 23(21): 13128.     CrossRef
  • Potential effects of nutrition-based weight loss therapies in reversing obesity-related breast cancer epigenetic marks
    Paula M. Lorenzo, Ana B. Crujeiras
    Food & Function.2021; 12(4): 1402.     CrossRef
  • Metabolomic Profiles in Adipocytes Differentiated from Adipose-Derived Stem Cells Following Exercise Training or High-Fat Diet
    Seita Osawa, Hisashi Kato, Yuki Maeda, Hisashi Takakura, Junetsu Ogasawara, Tetsuya Izawa
    International Journal of Molecular Sciences.2021; 22(2): 966.     CrossRef
  • Adipocytes Are the Control Tower That Manages Adipose Tissue Immunity by Regulating Lipid Metabolism
    Jeu Park, Jee Hyung Sohn, Sang Mun Han, Yoon Jeong Park, Jin Young Huh, Sung Sik Choe, Jae Bum Kim
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • Ceramides and Sphingosino-1-Phosphate in Obesity
    Ilona Juchnicka, Mariusz Kuźmicki, Jacek Szamatowicz
    Frontiers in Endocrinology.2021;[Epub]     CrossRef
  • Contribution of Adipose Tissue to the Chronic Immune Activation and Inflammation Associated With HIV Infection and Its Treatment
    Christine Bourgeois, Jennifer Gorwood, Anaelle Olivo, Laura Le Pelletier, Jacqueline Capeau, Olivier Lambotte, Véronique Béréziat, Claire Lagathu
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • Subcutaneous, but not visceral, adipose tissue as a marker for prognosis in gastric cancer patients with cachexia
    Jun Han, Min Tang, Chaocheng Lu, Lei Shen, Jiaqi She, Guohao Wu
    Clinical Nutrition.2021; 40(9): 5156.     CrossRef
  • miR-410-3P inhibits adipocyte differentiation by targeting IRS-1 in cancer-associated cachexia patients
    Diya Sun, Zuoyou Ding, Lei Shen, Fan Yang, Jun Han, Guohao Wu
    Lipids in Health and Disease.2021;[Epub]     CrossRef
  • Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A1 Receptor Ligands
    Mariachiara Zuccarini, Catia Lambertucci, Marzia Carluccio, Patricia Giuliani, Maurizio Ronci, Andrea Spinaci, Rosaria Volpini, Renata Ciccarelli, Patrizia Di Iorio
    Cells.2021; 10(12): 3560.     CrossRef
  • Obesity: The Crossroads of Opinion, Knowledge, and Opportunity
    L. A. Ruyatkina, D. S. Ruyatkin
    Meditsinskiy sovet = Medical Council.2020; (7): 108.     CrossRef
  • Sex Differences in Long-term Metabolic Effects of Maternal Resveratrol Intake in Adult Rat Offspring
    Purificación Ros, Francisca Díaz, Alejandra Freire-Regatillo, Pilar Argente-Arizón, Vicente Barrios, Jesús Argente, Julie A Chowen
    Endocrinology.2020;[Epub]     CrossRef
  • Adipose stem cells in obesity: challenges and opportunities
    Sunhye Shin, Asma S. El-Sabbagh, Brandon E. Lukas, Skylar J. Tanneberger, Yuwei Jiang
    Bioscience Reports.2020;[Epub]     CrossRef
  • Clinical and pathogenetic rationale for the prevention and treatment of obesity
    O.M. Korzh
    Shidnoevropejskij zurnal vnutrisnoi ta simejnoi medicini.2020; 2020(2): 146.     CrossRef
  • OBESITY: CLINICAL AND PATHOGENETIC JUSTIFICATION OF PREVENTION AND TREATMENT
    O. M. Korzh
    International Medical Journal.2020; (2): 5.     CrossRef
  • The Effect and Mechanism of Subcutaneous and Visceral Adipose Tissue Loss on Gastric Cancer Patients With Cachexia
    Jun Han, Min Tang, Guyue Zhang, Chaocheng Lu, Jiaqi She, Guohao Wu
    SSRN Electronic Journal .2020;[Epub]     CrossRef
Original Article
Pathophysiology
Low-Frequency Intermittent Hypoxia Suppresses Subcutaneous Adipogenesis and Induces Macrophage Polarization in Lean Mice
Yan Wang, Mary Yuk Kwan Lee, Judith Choi Wo Mak, Mary Sau Man Ip
Diabetes Metab J. 2019;43(5):659-674.   Published online April 23, 2019
DOI: https://doi.org/10.4093/dmj.2018.0196
  • 4,983 View
  • 51 Download
  • 5 Web of Science
  • 6 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   
Background

The relationship between obstructive sleep apnoea (OSA) and metabolic disorders is complex and highly associated. The impairment of adipogenic capacity in pre-adipocytes may promote adipocyte hypertrophy and increase the risk of further metabolic dysfunction. We hypothesize that intermittent hypoxia (IH), as a pathophysiologic feature of OSA, may regulate adipogenesis by promoting macrophage polarization.

Methods

Male C57BL/6N mice were exposed to either IH (240 seconds of 10% O2 followed by 120 seconds of 21% O2, i.e., 10 cycles/hour) or intermittent normoxia (IN) for 6 weeks. Stromal-vascular fractions derived from subcutaneous (SUB-SVF) and visceral (VIS-SVF) adipose tissues were cultured and differentiated. Conditioned media from cultured RAW 264.7 macrophages after air (Raw) or IH exposure (Raw-IH) were incubated with SUB-SVF during adipogenic differentiation.

Results

Adipogenic differentiation of SUB-SVF but not VIS-SVF from IH-exposed mice was significantly downregulated in comparison with that derived from IN-exposed mice. IH-exposed mice compared to IN-exposed mice showed induction of hypertrophic adipocytes and increased preferential infiltration of M1 macrophages in subcutaneous adipose tissue (SAT) compared to visceral adipose tissue. Complementary in vitro analysis demonstrated that Raw-IH media significantly enhanced inhibition of adipogenesis of SUB-SVF compared to Raw media, in agreement with corresponding gene expression levels of differentiation-associated markers and adipogenic transcription factors.

Conclusion

Low frequency IH exposure impaired adipogenesis of SAT in lean mice, and macrophage polarization may be a potential mechanism for the impaired adipogenesis.

Citations

Citations to this article as recorded by  
  • Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know
    Zhenyu Mao, Pengdou Zheng, Xiaoyan Zhu, Lingling Wang, Fengqin Zhang, Huiguo Liu, Hai Li, Ling Zhou, Wei Liu
    Sleep Medicine.2024; 119: 296.     CrossRef
  • Melatonin attenuates chronic intermittent hypoxia-induced intestinal barrier dysfunction in mice
    Xinyi Li, Fan Wang, Zhenfei Gao, Weijun Huang, Xiaoman Zhang, Feng Liu, Hongliang Yi, Jian Guan, Xiaolin Wu, Huajun Xu, Shankai Yin
    Microbiological Research.2023; 276: 127480.     CrossRef
  • Clinical outcomes and plaque characteristics in patients with coronary artery disease and concomitant sleep-disordered breathing treated by continuous positive airway pressure
    Kazuhiro Fujiyoshi, Taiki Tojo, Yoshiyasu Minami, Kohki Ishida, Miwa Ishida, Ken-ichiro Wakabayashi, Takayuki Inomata, Junya Ako
    Sleep Medicine.2023; 101: 543.     CrossRef
  • Potential Pathophysiological Pathways in the Complex Relationships between OSA and Cancer
    Manuel Sánchez-de-la-Torre, Carolina Cubillos, Olivia J. Veatch, Francisco Garcia-Rio, David Gozal, Miguel Angel Martinez-Garcia
    Cancers.2023; 15(4): 1061.     CrossRef
  • Effects of Chronic Intermittent Hypoxia and Chronic Sleep Fragmentation on Gut Microbiome, Serum Metabolome, Liver and Adipose Tissue Morphology
    Fan Wang, Juanjuan Zou, Huajun Xu, Weijun Huang, Xiaoman Zhang, Zhicheng Wei, Xinyi Li, Yupu Liu, Jianyin Zou, Feng Liu, Huaming Zhu, Hongliang Yi, Jian Guan, Shankai Yin
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • C‐X3‐C motif chemokine ligand 1/receptor 1 regulates the M1 polarization and chemotaxis of macrophages after hypoxia/reoxygenation injury
    Shuiming Guo, Lei Dong, Junhua Li, Yuetao Chen, Ying Yao, Rui Zeng, Nelli Shushakova, Hermann Haller, Gang Xu, Song Rong
    Chronic Diseases and Translational Medicine.2021; 7(4): 254.     CrossRef
Reviews
Others
A Journey to Understand Glucose Homeostasis: Starting from Rat Glucose Transporter Type 2 Promoter Cloning to Hyperglycemia
Yong Ho Ahn
Diabetes Metab J. 2018;42(6):465-471.   Published online November 2, 2018
DOI: https://doi.org/10.4093/dmj.2018.0116
  • 4,529 View
  • 64 Download
  • 7 Web of Science
  • 6 Crossref
AbstractAbstract PDFPubReader   

My professional journey to understand the glucose homeostasis began in the 1990s, starting from cloning of the promoter region of glucose transporter type 2 (GLUT2) gene that led us to establish research foundation of my group. When I was a graduate student, I simply thought that hyperglycemia, a typical clinical manifestation of type 2 diabetes mellitus (T2DM), could be caused by a defect in the glucose transport system in the body. Thus, if a molecular mechanism controlling glucose transport system could be understood, treatment of T2DM could be possible. In the early 70s, hyperglycemia was thought to develop primarily due to a defect in the muscle and adipose tissue; thus, muscle/adipose tissue type glucose transporter (GLUT4) became a major research interest in the diabetology. However, glucose utilization occurs not only in muscle/adipose tissue but also in liver and brain. Thus, I was interested in the hepatic glucose transport system, where glucose storage and release are the most actively occurring.

Citations

Citations to this article as recorded by  
  • Physiological functions of glucose transporter-2: From cell physiology to links with diabetes mellitus
    Zhean Shen, Yingze Hou, Guo Zhao, Libi Tan, Jili Chen, Ziqi Dong, Chunxiao Ni, Longying Pei
    Heliyon.2024; 10(3): e25459.     CrossRef
  • Missense mutation of ISL1 (E283D) is associated with the development of type 2 diabetes
    Juan Zhang, Rong Zhang, Chanwei Liu, Xiaoxu Ge, Ying Wang, Fusong Jiang, Langen Zhuang, Tiantian Li, Qihan Zhu, Yanyan Jiang, Yating Chen, Ming Lu, Yanzhong Wang, Meisheng Jiang, Yanjun Liu, Limei Liu
    Diabetologia.2024; 67(8): 1698.     CrossRef
  • Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose
    Zhen Qiao, Julia Sidorenko, Joana A. Revez, Angli Xue, Xueling Lu, Katri Pärna, Harold Snieder, Peter M. Visscher, Naomi R. Wray, Loic Yengo
    Nature Communications.2023;[Epub]     CrossRef
  • Umbilical Cord-Mesenchymal Stem Cell-Conditioned Medium Improves Insulin Resistance in C2C12 Cell
    Kyung-Soo Kim, Yeon Kyung Choi, Mi Jin Kim, Jung Wook Hwang, Kyunghoon Min, Sang Youn Jung, Soo-Kyung Kim, Yong-Soo Choi, Yong-Wook Cho
    Diabetes & Metabolism Journal.2021; 45(2): 260.     CrossRef
  • Aging-related modifications to G protein-coupled receptor signaling diversity
    Jaana van Gastel, Hanne Leysen, Jan Boddaert, Laura vangenechten, Louis M. Luttrell, Bronwen Martin, Stuart Maudsley
    Pharmacology & Therapeutics.2021; 223: 107793.     CrossRef
  • Glucose transporters in the small intestine in health and disease
    Hermann Koepsell
    Pflügers Archiv - European Journal of Physiology.2020; 472(9): 1207.     CrossRef
The Mechanism of White and Brown Adipocyte Differentiation
Hironori Nakagami
Diabetes Metab J. 2013;37(2):85-90.   Published online April 16, 2013
DOI: https://doi.org/10.4093/dmj.2013.37.2.85
  • 4,957 View
  • 102 Download
  • 29 Web of Science
  • 29 Crossref
AbstractAbstract PDFPubReader   

Obesity gives vent to many diseases such as type 2 diabetes, hypertension, and hyperlipidemia, being considered as the main causes of mortality and morbidity worldwide. The pathogenesis and pathophysiology of metabolic syndrome can well be understood by studying the molecular mechanisms that control the development and function of adipose tissue. In human body, exist two types of adipose tissue, the white and the brown one, which are reported to play various roles in energy homeostasis. The major and most efficient storage of energy occurs in the form of triglycerides in white adipose tissue while brown adipose tissue actively participates in both basal and inducible energy consumption in the form of thermogenesis. Recent years have observed a rapid and greater interest towards developmental plasticity and therapeutic potential of stromal cells those isolated from adipose tissue. The adipocyte differentiation involves a couple of regulators in the white or brown adipogenesis. Peroxisome proliferators-activated receptor-γ actively participates in regulating carbohydrate and lipid metabolism, and also acts as main regulator of both white and brown adipogenesis. This review based on our recent research, seeks to highlight the adipocyte differentiation.

Citations

Citations to this article as recorded by  
  • ZNF217: An Oncogenic Transcription Factor and Potential Therapeutic Target for Multiple Human Cancers
    Yepeng Wang, Chao Ma, Xuekun Yang, Jun Gao, Zhigang Sun
    Cancer Management and Research.2024; Volume 16: 49.     CrossRef
  • Neuronostatin regulates proliferation and differentiation of rat brown primary preadipocytes
    Małgorzata Krążek, Tatiana Wojciechowicz, Joanna Fiedorowicz, Mathias Z. Strowski, Krzysztof W. Nowak, Marek Skrzypski
    FEBS Letters.2024; 598(16): 1996.     CrossRef
  • COBL, MKX and MYOC Are Potential Regulators of Brown Adipose Tissue Development Associated with Obesity-Related Metabolic Dysfunction in Children
    Sarah Abdul Majeed, Helene Dunzendorfer, Juliane Weiner, John T. Heiker, Wieland Kiess, Antje Körner, Kathrin Landgraf
    International Journal of Molecular Sciences.2023; 24(4): 3085.     CrossRef
  • Identification of Biochemical Differences in White and Brown Adipocytes Using FTIR Spectroscopy
    DongHyun Shon, SeJun Park, SukJun Yoon, Yong Ko
    Applied Sciences.2022; 12(6): 3071.     CrossRef
  • Bone marrow adipocytes drive the development of tissue invasive Ly6Chigh monocytes during obesity
    Parastoo Boroumand, David C Prescott, Tapas Mukherjee, Philip J Bilan, Michael Wong, Jeff Shen, Ivan Tattoli, Yuhuan Zhou, Angela Li, Tharini Sivasubramaniyam, Nancy Shi, Lucie Y Zhu, Zhi Liu, Clinton Robbins, Dana J Philpott, Stephen E Girardin, Amira Kl
    eLife.2022;[Epub]     CrossRef
  • Direct Conversion of Human Fibroblasts into Adipocytes Using a Novel Small Molecular Compound: Implications for Regenerative Therapy for Adipose Tissue Defects
    Yoshihiro Sowa, Tsunao Kishida, Fiona Louis, Seiji Sawai, Makoto Seki, Toshiaki Numajiri, Kenji Takahashi, Osam Mazda
    Cells.2021; 10(3): 605.     CrossRef
  • The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions
    Paweł A. Kołodziejski, Ewa Pruszyńska-Oszmałek, Tatiana Wojciechowicz, Maciej Sassek, Natalia Leciejewska, Mariami Jasaszwili, Maria Billert, Emilian Małek, Dawid Szczepankiewicz, Magdalena Misiewicz-Mielnik, Iwona Hertig, Leszek Nogowski, Krzysztof W. No
    Genes.2021; 12(5): 756.     CrossRef
  • Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications
    Milad Bastami, Andrea Masotti, Zahra Saadatian, Abdolreza Daraei, Mojtaba Farjam, Ali Ghanbariasad, Sepideh Zununi Vahed, Shirin Eyvazi, Yaser Mansoori, Ziba Nariman-Saleh-Fam
    Experimental and Molecular Pathology.2021; 122: 104664.     CrossRef
  • Whole genome sequencing reveals a complex introgression history and the basis of adaptation to subarctic climate in wild sheep
    Maulik Upadhyay, Elisabeth Kunz, Edson Sandoval‐Castellanos, Andreas Hauser, Stefan Krebs, Alexander Graf, Helmut Blum, Arsen Dotsev, Innokentiy Okhlopkov, Alexey Shakhin, Vugar Bagirov, Gottfried Brem, Ruedi Fries, Natalia Zinovieva, Ivica Medugorac
    Molecular Ecology.2021; 30(24): 6701.     CrossRef
  • microRNAs in Human Adipose Tissue Physiology and Dysfunction
    Alina Kurylowicz
    Cells.2021; 10(12): 3342.     CrossRef
  • Multiple roles of HOX proteins in Metastasis: Let me count the ways
    Joy Jonkers, Priya Pai, Saraswati Sukumar
    Cancer and Metastasis Reviews.2020; 39(3): 661.     CrossRef
  • Connectivity mapping of a chronic kidney disease progression signature identified lysine deacetylases as novel therapeutic targets
    Vanessa R. Williams, Ana Konvalinka, Xuewen Song, Xiaohua Zhou, Rohan John, York Pei, James W. Scholey
    Kidney International.2020; 98(1): 116.     CrossRef
  • NOTCH Receptors and DLK Proteins Enhance Brown Adipogenesis in Mesenchymal C3H10T1/2 Cells
    María-Milagros Rodríguez-Cano, María-Julia González-Gómez, Beatriz Sánchez-Solana, Eva-María Monsalve, María-José M. Díaz-Guerra, Jorge Laborda, María-Luisa Nueda, Victoriano Baladrón
    Cells.2020; 9(9): 2032.     CrossRef
  • Early-life programming of adipose tissue
    Ericka Moreno-Mendez, Saray Quintero-Fabian, Cristina Fernandez-Mejia, Maria-Luisa Lazo-de-la-Vega-Monroy
    Nutrition Research Reviews.2020; 33(2): 244.     CrossRef
  • Nanotechnology‐Mediated Drug Delivery for the Treatment of Obesity and Its Related Comorbidities
    Yung‐Hao Tsou, Bin Wang, William Ho, Bin Hu, Pei Tang, Sydney Sweet, Xue‐Qing Zhang, Xiaoyang Xu
    Advanced Healthcare Materials.2019;[Epub]     CrossRef
  • ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m6A dependent manner
    Qing Liu, Yuanling Zhao, Ruifan Wu, Qin Jiang, Min Cai, Zhen Bi, Youhua Liu, Yongxi Yao, Jie Feng, Yizhen Wang, Xinxia Wang
    RNA Biology.2019; 16(12): 1785.     CrossRef
  • Regulation of Systemic Glucose Homeostasis by T Helper Type 2 Cytokines
    Yea Eun Kang, Hyun Jin Kim, Minho Shong
    Diabetes & Metabolism Journal.2019; 43(5): 549.     CrossRef
  • DLK proteins modulate NOTCH signaling to influence a brown or white 3T3-L1 adipocyte fate
    María-Luisa Nueda, María-Julia González-Gómez, María-Milagros Rodríguez-Cano, Eva-María Monsalve, María José M. Díaz-Guerra, Beatriz Sánchez-Solana, Jorge Laborda, Victoriano Baladrón
    Scientific Reports.2018;[Epub]     CrossRef
  • Norepinephrine triggers an immediate-early regulatory network response in primary human white adipocytes
    Juan Carlos Higareda-Almaraz, Michael Karbiener, Maude Giroud, Florian M. Pauler, Teresa Gerhalter, Stephan Herzig, Marcel Scheideler
    BMC Genomics.2018;[Epub]     CrossRef
  • MicroRNAs and adipocytokines: Promising biomarkers for pharmacological targets in diabetes mellitus and its complications
    Mohamad Reza Ashoori, Mohammad Rahmati-Yamchi, Alireza Ostadrahimi, Sedigheh Fekri Aval, Nosratollah Zarghami
    Biomedicine & Pharmacotherapy.2017; 93: 1326.     CrossRef
  • The Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARG) in Adipogenesis: Applying Knowledge from the Fish Aquaculture Industry to Biomedical Research
    Rebecca Wafer, Panna Tandon, James E. N. Minchin
    Frontiers in Endocrinology.2017;[Epub]     CrossRef
  • Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity
    Marie Pigeyre, Fereshteh T. Yazdi, Yuvreet Kaur, David Meyre
    Clinical Science.2016; 130(12): 943.     CrossRef
  • Metformin-suppressed differentiation of human visceral preadipocytes: Involvement of microRNAs
    Koji Fujita, Hisakazu Iwama, Kyoko Oura, Tomoko Tadokoro, Kayo Hirose, Miwako Watanabe, Teppei Sakamoto, Akiko Katsura, Shima Mimura, Takako Nomura, Joji Tani, Hisaaki Miyoshi, Asahiro Morishita, Hirohito Yoneyama, Keiichi Okano, Yasuyuki Suzuki, Takashi
    International Journal of Molecular Medicine.2016; 38(4): 1135.     CrossRef
  • Platycodon grandiflorum A. De Candolle Ethanolic Extract Inhibits Adipogenic Regulators in 3T3-L1 Cells and Induces Mitochondrial Biogenesis in Primary Brown Preadipocytes
    Hye-Lin Kim, Jinbong Park, Hyewon Park, Yunu Jung, Dong-Hyun Youn, JongWook Kang, Mi-Young Jeong, Jae-Young Um
    Journal of Agricultural and Food Chemistry.2015; 63(35): 7721.     CrossRef
  • New genetic loci link adipose and insulin biology to body fat distribution
    Dmitry Shungin, Thomas W. Winkler, Damien C. Croteau-Chonka, Teresa Ferreira, Adam E. Locke, Reedik Mägi, Rona J. Strawbridge, Tune H. Pers, Krista Fischer, Anne E. Justice, Tsegaselassie Workalemahu, Joseph M. W. Wu, Martin L. Buchkovich, Nancy L. Heard-
    Nature.2015; 518(7538): 187.     CrossRef
  • Oxidative stress, redox regulation and diseases of cellular differentiation
    Zhi-Wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew
    Biochimica et Biophysica Acta (BBA) - General Subjects.2015; 1850(8): 1607.     CrossRef
  • Nutraceuticals and regulation of adipocyte life: Premises or promises
    Monica Colitti, Stefano Grasso
    BioFactors.2014; 40(4): 398.     CrossRef
  • BMP and activin membrane-bound inhibitor (BAMBI) inhibits the adipogenesis of porcine preadipocytes through Wnt/β-catenin signaling pathway
    Yin Mai, Zhenyu Zhang, Hao Yang, Peiyue Dong, Guiyan Chu, Gongshe Yang, Shiduo Sun
    Biochemistry and Cell Biology.2014; 92(3): 172.     CrossRef
  • The HOX genes network in metabolic diseases
    Alfredo Procino, Clemente Cillo
    Cell Biology International.2013; 37(11): 1145.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP