Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
2 "ATP-sensitive potassium channel"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Articles
Polymorphisms of Kir6.2 Gene are Associated with Type 2 Diabetes and Blood Pressure in the Korean Population.
Bo Kyeong Koo, Hong Il Kim, Eu Jin Lee, Young Min Cho, Hyoung Doo Shin, Hak Chul Jang, Hong Kyu Lee, Kyong Soo Park
Korean Diabetes J. 2005;29(5):440-450.   Published online September 1, 2005
  • 1,122 View
  • 23 Download
AbstractAbstract PDF
BACKGOUND: ATP-sensitive potassium channels are a heterooctamer of SUR1 and Kir6.2, which are key components in the insulin secretory mechanism. Whether common variants in the Kir6.2 gene are associated with type 2 diabetes and/or its associated phenotypes was investigated. METHODS: The Kir6.2 gene was sequenced in 24Korean DNA samples to identify common polymorphisms (frequency > 0.05). The common variants found among these samples were genotyped in a larger population including type 2 diabetic patients and nondiabetic subjects. RESULTS: Thirteen single nucleotide polymorphisms and one insertion/deletion polymorphism were identified in the Kir6.2 gene, with six common variants(g.-1709A>T, g.-1525T>C, g.67G >A [E23K], g.570C>T [A190A], g.1009A>G [1337V], and g.1388C>T) genotyped in 761 type 2 diabetic patients and 675 nondiabetic subjects. Four individual polymorphisms(g.-1525T > C, g.67G>A, g.1009A>G and g.1388C>T) appeared to be associated with type 2 diabetes (age, sex and BMI-adjusted odds ratio[OR]=0.751[0.584-0.967] in the recessive model on g-1525T>C, 1.193 [1.020-1.394] in the additive model in g.67G>A, 1.195 [1.022-1.399] in the additive model on g.1009A>G, 0.835 [0.717-0.973] in the additive model in g.1388C >T). The haplotype "ATACGC" in the Kir6.2 gene, composed of rare allele in the g.67 and g.1009, was also associated with a higher prevalence of type 2 diabetes (age, sex, and BMI- adjusted OR = 1.256 [1.067-1.479], P for logistic regression = 0.006). In addition g.67G>A and g.1009A >G in the KCNJ11 were strongly associated with a high systolic blood pressure. CONCLUSION: Polymorphisms in the Kir6.2 gene are associated with type 2 diabetes and blood pressure in the Korean population.
A Differential Effect of Intracellular ATP on Skeletal-and Smooth Muscle-Type KATP Channel Activities.
Oh Dae Kwon, Jeong Geun Lim, Haeng Gyun Kim, Dae Kwang Kim, Jae Seok Hwang, Keun Gyu Park, Sung Hee Park, Chi Heum Cho, In Kyu Lee, Dae Kyu Song
Korean Diabetes J. 2003;27(4):332-342.   Published online August 1, 2003
  • 918 View
  • 18 Download
AbstractAbstract PDF
BACKGROUND
The ATP-sensitive potassium (KATP) channel comprises an inwardly- rectifying K+ channel (Kir) and a sulfonylurea receptor(SUR). This study investigated the mechanism of different ATP sensitivity between skeletal-(Kir6.2/SUR2A) and smooth muscle- (Kir6.2/SUR2B) type KATP channels. METHODS: Messenger RNAs encoding mouse Kir6.2, and rat SUR2A or 2B were co-injected into Xenopus Laevis oocytes to express each type of KATP channel. Using the inside-out patch clamp technique, the channel currents for MgATP sensitivity were measured and analyzed. RESULTS: By addition of 100 microM of MgATP, the current initially decreased and then slowly increased in Kir6.2/SUR2A. This gradual, ATP sensitivity decrease during prolonged MgATP application was totally blocked by LY 294002, a pho- sphatidylinositol-3 and -4 kinase inhibitor. In contrast, a rather rapid sensitivity decrease after initial inhibition was observed in Kir6.2/SUR2B by 100 microM of ATP, which was not blocked by LY 294002. This channel activation was Mg2+- dependent, suggesting that ATP hydrolysis is critical. CONCLUSION: This result supports the idea that the ability of MgATP to stimulate Kir6.2/SUR2B channels reflects a faster rate of ATP hydrolysis at NBD2 of SUR2B.

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP