Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
As a member of the class IIa histone deacetylases (HDACs), HDAC9 catalyzes the deacetylation of histones and transcription factors, commonly leading to the suppression of gene transcription. The activity of HDAC9 is regulated transcriptionally and post-translationally. HDAC9 is known to play an essential role in regulating myocyte and adipocyte differentiation and cardiac muscle development. Also, recent studies have suggested that HDAC9 is involved in the pathogenesis of chronic diseases, including cardiovascular diseases, osteoporosis, autoimmune disease, cancer, obesity, insulin resistance, and liver fibrosis. HDAC9 modulates the expression of genes related to the pathogenesis of chronic diseases by altering chromatin structure in their promotor region or reducing the transcriptional activity of their respective transcription factors. This review summarizes the current knowledge of the regulation of HDAC9 expression and activity. Also, the roles of HDAC9 in the pathogenesis of chronic diseases are discussed, along with potential underlying mechanisms.
Citations
Epidemiological studies have suggested an association between selenium (Se) and diabetes mellitus (DM). However, different studies have reported conflicting results. Therefore, we performed a comprehensive meta-analysis to clarify the impact of Se on DM.
We searched the PubMed database for studies on the association between Se and DM from inception to June 2018.
Twenty articles evaluating 47,930 participants were included in the analysis. The meta-analysis found that high levels of Se were significantly associated with the presence of DM (pooled odds ratios [ORs], 1.88; 95% confidence interval [CI], 1.44 to 2.45). However, significant heterogeneity was found (
This meta-analysis demonstrates that high levels of Se are associated with the presence of DM. Further prospective and randomized controlled trials are warranted to elucidate the link better.
Citations
The Association of Circulating Selenium Concentrations with Diabetes Mellitus
Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration.
Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels.
AUC predicted by MIET correlated well with that measured by CGM (
Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration.
Citations