Background Previous research has linked solitary living to various adverse health outcomes, but its association with diabetic complications among individuals with type 2 diabetes mellitus (T2DM) remains underexplored. We examined the risk of endstage kidney disease (ESKD) in individuals with diabetes living alone (IDLA).
Methods This population-based cohort study used the National Health Information Database of Korea, which included 2,432,613 adults with T2DM. Household status was determined based on the number of registered family members. IDLA was defined as continuously living alone for 5 years or more. A multivariable Cox proportional hazards model was used to evaluate the association between living alone and the risk of developing ESKD.
Results During a median follow-up of 6.0 years, 26,691 participants developed ESKD, with a higher incidence observed in the IDLA group than in the non-IDLA group. After adjusting for confounding variables, the hazard ratio for ESKD in the IDLA group was 1.10 (95% confidence interval, 1.06 to 1.14). The risk of ESKD was particularly elevated in younger individuals, those without underlying chronic kidney disease, with longer durations of living alone, and with low household income. Adherence to favorable lifestyle behaviors (no smoking, no alcohol consumption, and engaging in regular exercise) was associated with a significantly lower risk of ESKD, with a more pronounced effect in the IDLA group.
Conclusion Living alone was associated with a higher risk of ESKD in individuals with T2DM. Tailored medical interventions and social support for IDLA are crucial for the prevention of diabetic complications.
The widespread and pervasive use of artificial light at night (ALAN) in our modern 24-hour society has emerged as a substantial disruptor of natural circadian rhythms, potentially leading to a rise in unhealthy lifestyle-related behaviors (e.g., poor sleep; shift work). This phenomenon has been associated with an increased risk of type 2 diabetes mellitus (T2DM), which is a pressing global public health concern. However, to date, reviews summarizing associations between ALAN and T2DM have primarily focused on the limited characteristics of exposure (e.g., intensity) to ALAN. This literature review extends beyond prior reviews by consolidating recent studies from 2000 to 2024 regarding associations between both indoor and outdoor ALAN exposure and the incidence or prevalence of T2DM. We also described potential biological mechanisms through which ALAN modulates glucose metabolism. Furthermore, we outlined knowledge gaps and investigated how various ALAN characteristics beyond only light intensity (including light type, timing, duration, wavelength, and individual sensitivity) influence T2DM risk. Recognizing the detrimental impact of ALAN on sleep health and the behavioral correlates of physical activity and dietary patterns, we additionally summarized studies investigating the potential mediating role of each component in the relationship between ALAN and glucose metabolism. Lastly, we proposed implications of chronotherapies and chrononutrition for diabetes management in the context of ALAN exposure.
Citations
Citations to this article as recorded by
Impact of bedroom light exposure on glucose metabolic markers and the role of circadian-dependent meal timing: A population-based cross-sectional study Qi Li, Yu-xiang Xu, Xiu-zhen Lu, Yu-ting Shen, Yu-hui Wan, Pu-yu Su, Fang-biao Tao, Xin Chen, Ying Sun Ecotoxicology and Environmental Safety.2025; 290: 117589. CrossRef
The impact of environmental pollution on metabolic health and the risk of non-communicable chronic metabolic diseases in humans Caterina Formichi, Sonia Caprio, Laura Nigi, Francesco Dotta Nutrition, Metabolism and Cardiovascular Diseases.2025; 35(6): 103975. CrossRef
Circadian Deregulation: Back Facing the Sun Toward Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Development Mariana Verdelho Machado Nutrients.2024; 16(24): 4294. CrossRef