Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
1 "Jing W. Hughes"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Basic Research
Article image
Rediscovering Primary Cilia in Pancreatic Islets
Eun Young Lee, Jing W. Hughes
Diabetes Metab J. 2023;47(4):454-469.   Published online April 28, 2023
DOI: https://doi.org/10.4093/dmj.2022.0442
  • 3,700 View
  • 270 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDFPubReader   ePub   
Primary cilia are microtubule-based sensory and signaling organelles on the surfaces of most eukaryotic cells. Despite their early description by microscopy studies, islet cilia had not been examined in the functional context until recent decades. In pancreatic islets as in other tissues, primary cilia facilitate crucial developmental and signaling pathways in response to extracellular stimuli. Many human developmental and genetic disorders are associated with ciliary dysfunction, some manifesting as obesity and diabetes. Understanding the basis for metabolic diseases in human ciliopathies has been aided by close examination of cilia action in pancreatic islets at cellular and molecular levels. In this article, we review the evidence for ciliary expression on islet cells, known roles of cilia in pancreas development and islet hormone secretion, and summarize metabolic manifestations of human ciliopathy syndromes. We discuss emerging data on primary cilia regulation of islet cell signaling and the structural basis of cilia-mediated cell crosstalk, and offer our interpretation on the role of cilia in glucose homeostasis and human diseases.

Citations

Citations to this article as recorded by  
  • Genome-wide association study and trans-ethnic meta-analysis identify novel susceptibility loci for type 2 diabetes mellitus
    Asma A Elashi, Salman M Toor, Umm-Kulthum Ismail Umlai, Yasser A Al-Sarraj, Shahrad Taheri, Karsten Suhre, Abdul Badi Abou-Samra, Omar M E Albagha
    BMC Medical Genomics.2024;[Epub]     CrossRef
  • Reduced Nephrin Tyrosine Phosphorylation Enhances Insulin Secretion and Increases Glucose Tolerance With Age
    Casey R Williamson, Nina Jones
    Endocrinology.2024;[Epub]     CrossRef
  • Beta-Hydroxybutyrate Promotes Basal Insulin Secretion While Decreasing Glucagon Secretion in Mouse and Human Islets
    Risha Banerjee, Ying Zhu, George P Brownrigg, Renata Moravcova, Jason C Rogalski, Leonard J Foster, James D Johnson, Jelena Kolic
    Endocrinology.2024;[Epub]     CrossRef
  • Beta cell primary cilia mediate somatostatin responsiveness via SSTR3
    Samantha E. Adamson, Zipeng A. Li, Jing W. Hughes
    Islets.2023;[Epub]     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP