Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Author index

Page Path
HOME > Browse > Author index
Search
Minyoung Lee  (Lee M) 7 Articles
Complications
Article image
Association of Muscle Mass Loss with Diabetes Development in Liver Transplantation Recipients
Sejeong Lee, Minyoung Lee, Young-Eun Kim, Hae Kyung Kim, Sook Jung Lee, Jiwon Kim, Yurim Yang, Chul Hoon Kim, Hyangkyu Lee, Dong Jin Joo, Myoung Soo Kim, Eun Seok Kang
Diabetes Metab J. 2024;48(1):146-156.   Published online January 3, 2024
DOI: https://doi.org/10.4093/dmj.2022.0100
  • 1,953 View
  • 166 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Post-transplant diabetes mellitus (PTDM) is one of the most significant complications after transplantation. Patients with end-stage liver diseases requiring transplantation are prone to sarcopenia, but the association between sarcopenia and PTDM remains to be elucidated. We aimed to investigate the effect of postoperative muscle mass loss on PTDM development.
Methods
A total of 500 patients who underwent liver transplantation at a tertiary care hospital between 2005 and 2020 were included. Skeletal muscle area at the level of the L3–L5 vertebrae was measured using computed tomography scans performed before and 1 year after the transplantation. The associations between the change in the muscle area after the transplantation and the incidence of PTDM was investigated using a Cox proportional hazard model.
Results
During the follow-up period (median, 4.9 years), PTDM occurred in 165 patients (33%). The muscle mass loss was greater in patients who developed PTDM than in those without PTDM. Muscle depletion significantly increased risk of developing PTDM after adjustment for other confounding factors (hazard ratio, 1.50; 95% confidence interval, 1.23 to 1.84; P=0.001). Of the 357 subjects who had muscle mass loss, 124 (34.7%) developed PTDM, whereas of the 143 patients in the muscle mass maintenance group, 41 (28.7%) developed PTDM. The cumulative incidence of PTDM was significantly higher in patients with muscle loss than in patients without muscle loss (P=0.034).
Conclusion
Muscle depletion after liver transplantation is associated with increased risk of PTDM development.
Lifestyle
Article image
Clinical Effects of a Home Care Pilot Program for Patients with Type 1 Diabetes Mellitus: A Retrospective Cohort Study
Sejeong Lee, KyungYi Kim, Ji Eun Kim, Yura Hyun, Minyoung Lee, Myung-Il Hahm, Sang Gyu Lee, Eun Seok Kang
Diabetes Metab J. 2023;47(5):693-702.   Published online June 22, 2023
DOI: https://doi.org/10.4093/dmj.2022.0170
  • 2,849 View
  • 160 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Given the importance of continuous self-care for people with type 1 diabetes mellitus (T1DM), the Ministry of Health and Welfare of Korea launched a pilot program for chronic disease management. Herein, we applied a home care pilot program to people with T1DM to investigate its effects.
Methods
This retrospective cohort study was conducted at a single tertiary hospital (January 2019 to October 2021). A multidisciplinary team comprising doctors, nurses, and clinical nutritionists provided specialized education and periodically assessed patients’ health status through phone calls or text messages. A linear mixed model adjusting for age, sex, and body mass index was used to analyze the glycemic control changes before and after implementing the program between the intervention and control groups.
Results
Among 408 people with T1DM, 196 were enrolled in the intervention group and 212 in the control group. The reduction in glycosylated hemoglobin (HbA1c) after the program was significantly greater in the intervention group than in the control group (estimated marginal mean, –0.57% vs. –0.23%, P=0.008); the same trend was confirmed for glycoalbumin (GA) (–3.2% vs. –0.39%, P<0.001). More patients achieved the target values of HbA1c (<7.0%) and GA (<20%) in the intervention group than in the control group at the 9-month follow-up (34.5% vs. 19.6% and 46.7% vs. 28.0%, respectively).
Conclusion
The home care program for T1DM was clinically effective in improving glycemic control and may provide an efficient care option for people with T1DM, and positive outcomes are expected to expand the program to include more patients.

Citations

Citations to this article as recorded by  
  • Glycemic outcomes and patient satisfaction and self-management improves in transition from standard to virtual multidisciplinary care
    Noga Minsky, Liat Arnon Klug, Tatyana Kolobov, Elizabeth Tarshish, Yuval Shalev Many, Aviva Lipsitz, Amna Jabarin, Nicole Morozov, Dania Halperin, Moshe Shalom, Rachel Nissanholtz-Gannot, Genya Aharon-Hananel, Amir Tirosh, Orly Tamir
    Diabetes Research and Clinical Practice.2024; 209: 111587.     CrossRef
Complications
Article image
Renal Tubular Damage Marker, Urinary N-acetyl-β-D-Glucosaminidase, as a Predictive Marker of Hepatic Fibrosis in Type 2 Diabetes Mellitus
Hae Kyung Kim, Minyoung Lee, Yong-ho Lee, Eun Seok Kang, Bong-Soo Cha, Byung-Wan Lee
Diabetes Metab J. 2022;46(1):104-116.   Published online July 13, 2021
DOI: https://doi.org/10.4093/dmj.2020.0273
  • 6,683 View
  • 208 Download
  • 5 Web of Science
  • 6 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Non-alcoholic steatohepatitis is closely associated with the progression of diabetic kidney disease (DKD) in type 2 diabetes mellitus (T2DM). We investigated whether urinary N-acetyl-β-D-glucosaminidase (u-NAG), an early renal tubular damage biomarker in DKD, could be related to the degree of hepatic fibrosis in patients with T2DM.
Methods
A total of 300 patients with T2DM were enrolled in this study. Hepatic steatosis and fibrosis were determined using transient elastography. The levels of urinary biomarkers, including u-NAG, albumin, protein, and creatinine, and glucometabolic parameters were measured.
Results
Based on the median value of the u-NAG to creatinine ratio (u-NCR), subjects were divided into low and high u-NCR groups. The high u-NCR group showed a significantly longer duration of diabetes, worsened hyperglycemia, and a more enhanced hepatic fibrosis index. A higher u-NCR was associated with a greater odds ratio for the risk of higher hepatic fibrosis stage (F2: odds ratio, 1.99; 95% confidence interval [CI], 1.04 to 3.82). Also, u-NCR was an independent predictive marker for more advanced hepatic fibrosis, even after adjusting for several confounding factors (β=1.58, P<0.01).
Conclusion
The elevation of u-NAG was independently associated with a higher degree of hepatic fibrosis in patients with T2DM. Considering the common metabolic milieu of renal and hepatic fibrosis in T2DM, the potential use of u-NAG as an effective urinary biomarker reflecting hepatic fibrosis in T2DM needs to be validated in the future.

Citations

Citations to this article as recorded by  
  • Changes in urinary renal injury markers in children with Mycoplasma pneumoniae pneumonia and a prediction model for related early renal injury
    Ju Zhang, He-kai Ma, Bao-wen Li, Ke-Ke Ma, Yu-Ling Zhang, Shu-jun Li
    Italian Journal of Pediatrics.2024;[Epub]     CrossRef
  • Intermittent fasting plus early time-restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: a randomized controlled trial
    Xiao Tong Teong, Kai Liu, Andrew D. Vincent, Julien Bensalem, Bo Liu, Kathryn J. Hattersley, Lijun Zhao, Christine Feinle-Bisset, Timothy J. Sargeant, Gary A. Wittert, Amy T. Hutchison, Leonie K. Heilbronn
    Nature Medicine.2023; 29(4): 963.     CrossRef
  • Significance of Diabetic Kidney Disease Biomarkers in Predicting Metabolic-Associated Fatty Liver Disease
    Jaehyun Bae, Byung-Wan Lee
    Biomedicines.2023; 11(7): 1928.     CrossRef
  • Abdominal adipose tissue and type 2 diabetic kidney disease: adipose radiology assessment, impact, and mechanisms
    Fei Lu, Jinlei Fan, Fangxuan Li, Lijing Liu, Zhiyu Chen, Ziyu Tian, Liping Zuo, Dexin Yu
    Abdominal Radiology.2023; 49(2): 560.     CrossRef
  • β‐Amyrin ameliorates diabetic nephropathy in mice and regulates the miR‐181b‐5p/HMGB2 axis in high glucose‐stimulated HK‐2 cells
    Wenhua Xu, Hongwu Zhang, Qinfeng Zhang, Jialan Xu
    Environmental Toxicology.2022; 37(3): 637.     CrossRef
  • High Glycated Hemoglobin Instead of High Body Mass Index Might Increase the Urine N-Acetyl-β-D-glucosaminidase Con-Centration in Children and Adolescents with Diabetes Mellitus
    Jin-Soon Suh, Kyoung Soon Cho, Seul Ki Kim, Shin-Hee Kim, Won Kyoung Cho, Min Ho Jung, Moon Bae Ahn
    Life.2022; 12(6): 879.     CrossRef
Basic Research
Article image
Ipragliflozin, an SGLT2 Inhibitor, Ameliorates High-Fat Diet-Induced Metabolic Changes by Upregulating Energy Expenditure through Activation of the AMPK/ SIRT1 Pathway
Ji-Yeon Lee, Minyoung Lee, Ji Young Lee, Jaehyun Bae, Eugene Shin, Yong-ho Lee, Byung-Wan Lee, Eun Seok Kang, Bong-Soo Cha
Diabetes Metab J. 2021;45(6):921-932.   Published online February 22, 2021
DOI: https://doi.org/10.4093/dmj.2020.0187
  • 9,419 View
  • 426 Download
  • 21 Web of Science
  • 22 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that exhibit multiple extraglycemic effects. However, there are conflicting results regarding the effects of SGLT2 inhibition on energy expenditure and thermogenesis. Therefore, we investigated the effect of ipragliflozin (a selective SGLT2 inhibitor) on energy metabolism.
Methods
Six-week-old male 129S6/Sv mice with a high propensity for adipose tissue browning were randomly assigned to three groups: normal chow control, 60% high-fat diet (HFD)-fed control, and 60% HFD-fed ipragliflozin-treated groups. The administration of diet and medication was continued for 16 weeks.
Results
The HFD-fed mice became obese and developed hepatic steatosis and adipose tissue hypertrophy, but their random glucose levels were within the normal ranges; these features are similar to the metabolic features of a prediabetic condition. Ipragliflozin treatment markedly attenuated HFD-induced hepatic steatosis and reduced the size of hypertrophied adipocytes to that of smaller adipocytes. In the ipragliflozin treatment group, uncoupling protein 1 (Ucp1) and other thermogenesis-related genes were significantly upregulated in the visceral and subcutaneous adipose tissue, and fatty acid oxidation was increased in the brown adipose tissue. These effects were associated with a significant reduction in the insulin-to-glucagon ratio and the activation of the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway in the liver and adipose tissue.
Conclusion
SGLT2 inhibition by ipragliflozin showed beneficial metabolic effects in 129S6/Sv mice with HFD-induced obesity that mimics prediabetic conditions. Our data suggest that SGLT2 inhibitors, through their upregulation of energy expenditure, may have therapeutic potential in prediabetic obesity.

Citations

Citations to this article as recorded by  
  • SGLT2 inhibitors and AMPK: The road to cellular housekeeping?
    Nasser Safaie, Shahab Masoumi, Shaban Alizadeh, Pourya Mirzajanzadeh, Hamid Reza Nejabati, Mobasher Hajiabbasi, Vahid Alivirdiloo, Neda Chobdari Basmenji, Aysan Derakhshi Radvar, Ziba Majidi, Yousef Faridvand
    Cell Biochemistry and Function.2024;[Epub]     CrossRef
  • Proximal tubule hypertrophy and hyperfunction: a novel pathophysiological feature in disease states
    Mehmet Kanbay, Sidar Copur, Mustafa Guldan, Lasin Ozbek, Alper Hatipoglu, Adrian Covic, Francesca Mallamaci, Carmine Zoccali
    Clinical Kidney Journal.2024;[Epub]     CrossRef
  • Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value
    Yafei Xie, Yujie Wei, Dan Li, Jie Pu, Hong Ding, Xiaowei Zhang
    Journal of Cardiovascular Pharmacology.2023; 81(1): 4.     CrossRef
  • Current Treatment Options, Including Diet, Exercise, and Medications
    Mazen Noureddin, Manal F. Abdelmalek
    Clinics in Liver Disease.2023; 27(2): 397.     CrossRef
  • SGLT2 Inhibitors and Kidney Diseases: A Clinical Perspective
    Panagiotis Theofilis, Rigas G. Kalaitzidis
    Current Medicinal Chemistry.2023; 30(23): 2595.     CrossRef
  • Treatment of obesity-related diabetes: significance of thermogenic adipose tissue and targetable receptors
    Ruping Pan, Jiadai Liu, Yong Chen
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • Immunomodulatory Effects of SGLT2 Inhibitors—Targeting Inflammation and Oxidative Stress in Aging
    Ema Schönberger, Vjera Mihaljević, Kristina Steiner, Sandra Šarić, Tomislav Kurevija, Ljiljana Trtica Majnarić, Ines Bilić Ćurčić, Silvija Canecki-Varžić
    International Journal of Environmental Research and Public Health.2023; 20(17): 6671.     CrossRef
  • SGLT‐2 inhibitors enhance the effect of metformin to ameliorate hormonal changes and inflammatory markers in a rat PCOS model
    Manal Moustafa Mahmoud, Laila Ahmed Rashed, Somia Abdulatif Soliman, Safaa Mostafa Sayed, Omneya Kamel, Samaa Samir Kamar, Rania El Sayed Hussien
    Physiological Reports.2023;[Epub]     CrossRef
  • Resting energy expenditure based on equation estimation can predict renal outcomes in patients with type 2 diabetes mellitus and biopsy-proven diabetic kidney disease
    Xiang Xiao, Shuming Ji, Junlin Zhang, Deying Kang, Fang Liu
    Renal Failure.2023;[Epub]     CrossRef
  • Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy
    Zhicheng Gao, Jiaqi Bao, Yilan Hu, Junjie Tu, Lifang Ye, Lihong Wang
    Current Drug Targets.2023; 24(13): 1009.     CrossRef
  • SIRT1 mediates the inhibitory effect of Dapagliflozin on EndMT by inhibiting the acetylation of endothelium Notch1
    Weijie Wang, Yilan Li, Yanxiu Zhang, Tao Ye, Kui Wang, Shuijie Li, Yao Zhang
    Cardiovascular Diabetology.2023;[Epub]     CrossRef
  • Direct cardio-protection of Dapagliflozin against obesity-related cardiomyopathy via NHE1/MAPK signaling
    Ke Lin, Na Yang, Wu Luo, Jin-fu Qian, Wei-wei Zhu, Shi-ju Ye, Chen-xin Yuan, Di-yun Xu, Guang Liang, Wei-jian Huang, Pei-ren Shan
    Acta Pharmacologica Sinica.2022; 43(10): 2624.     CrossRef
  • Pleiotropic effects of SGLT2 inhibitors and heart failure outcomes
    Panagiotis Theofilis, Marios Sagris, Evangelos Oikonomou, Alexios S. Antonopoulos, Gerasimos Siasos, Kostas Tsioufis, Dimitris Tousoulis
    Diabetes Research and Clinical Practice.2022; 188: 109927.     CrossRef
  • Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models
    Sandra Feijóo-Bandín, Alana Aragón-Herrera, Manuel Otero-Santiago, Laura Anido-Varela, Sandra Moraña-Fernández, Estefanía Tarazón, Esther Roselló-Lletí, Manuel Portolés, Oreste Gualillo, José Ramón González-Juanatey, Francisca Lago
    International Journal of Molecular Sciences.2022; 23(10): 5634.     CrossRef
  • Potential molecular mechanism of action of sodium-glucose co-transporter 2 inhibitors in the prevention and management of diabetic retinopathy
    Lia Meuthia Zaini, Arief S Kartasasmita, Tjahjono D Gondhowiardjo, Maimun Syukri, Ronny Lesmana
    Expert Review of Ophthalmology.2022; 17(3): 199.     CrossRef
  • New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure
    Juexing Li, Lei Zhou, Hui Gong
    Frontiers in Cardiovascular Medicine.2022;[Epub]     CrossRef
  • Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis
    Milton Packer
    Circulation.2022; 146(18): 1383.     CrossRef
  • Nutraceutical activation of Sirt1: a review
    James J DiNicolantonio, Mark F McCarty, James H O'Keefe
    Open Heart.2022; 9(2): e002171.     CrossRef
  • Dapagliflozin Restores Impaired Autophagy and Suppresses Inflammation in High Glucose-Treated HK-2 Cells
    Jing Xu, Munehiro Kitada, Yoshio Ogura, Haijie Liu, Daisuke Koya
    Cells.2021; 10(6): 1457.     CrossRef
  • Could Sodium/Glucose Co-Transporter-2 Inhibitors Have Antiarrhythmic Potential in Atrial Fibrillation? Literature Review and Future Considerations
    Dimitrios A. Vrachatis, Konstantinos A. Papathanasiou, Konstantinos E. Iliodromitis, Sotiria G. Giotaki, Charalampos Kossyvakis, Konstantinos Raisakis, Andreas Kaoukis, Vaia Lambadiari, Dimitrios Avramides, Bernhard Reimers, Giulio G. Stefanini, Michael C
    Drugs.2021; 81(12): 1381.     CrossRef
  • Differential Pathophysiological Mechanisms in Heart Failure With a Reduced or Preserved Ejection Fraction in Diabetes
    Milton Packer
    JACC: Heart Failure.2021; 9(8): 535.     CrossRef
  • Ketone bodies: from enemy to friend and guardian angel
    Hubert Kolb, Kerstin Kempf, Martin Röhling, Martina Lenzen-Schulte, Nanette C. Schloot, Stephan Martin
    BMC Medicine.2021;[Epub]     CrossRef
Drug/Regimen
Article image
Lobeglitazone: A Novel Thiazolidinedione for the Management of Type 2 Diabetes Mellitus
Jaehyun Bae, Taegyun Park, Hyeyoung Kim, Minyoung Lee, Bong-Soo Cha
Diabetes Metab J. 2021;45(3):326-336.   Published online April 19, 2021
DOI: https://doi.org/10.4093/dmj.2020.0272
  • 11,419 View
  • 472 Download
  • 27 Web of Science
  • 26 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and β-cell dysfunction. Among available oral antidiabetic agents, only the thiazolidinediones (TZDs) primarily target insulin resistance. TZDs improve insulin sensitivity by activating peroxisome proliferator-activated receptor γ. Rosiglitazone and pioglitazone have been used widely for T2DM treatment due to their potent glycemic efficacy and low risk of hypoglycemia. However, their use has decreased because of side effects and safety issues, such as cardiovascular concerns and bladder cancer. Lobeglitazone (Chong Kun Dang Pharmaceutical Corporation), a novel TZD, was developed to meet the demands for an effective and safe TZD. Lobeglitazone shows similar glycemic efficacy to pioglitazone, with a lower effective dose, and favorable safety results. It also showed pleiotropic effects in preclinical and clinical studies. In this article, we summarize the pharmacologic, pharmacokinetic, and clinical characteristics of lobeglitazone.

Citations

Citations to this article as recorded by  
  • Thiazolidinediones: Recent Development in Analytical Methodologies
    Tarang Patel, Vatsal Patel
    Journal of Chromatographic Science.2024; 62(8): 789.     CrossRef
  • Etiology of Drug-Induced Edema: A Review of Dihydropyridine, Thiazolidinedione, and Other Medications Causing Edema
    Evan S Sinnathamby, Bretton T Urban, Robert A Clark, Logan T Roberts, Audrey J De Witt, Danielle M Wenger, Aya Mouhaffel, Olga Willett, Shahab Ahmadzadeh, Sahar Shekoohi, Alan D Kaye, Giustino Varrassi
    Cureus.2024;[Epub]     CrossRef
  • Novel thiazolidin-4-one benzenesulfonamide hybrids as PPARγ agonists: Design, synthesis and in vivo anti-diabetic evaluation
    Islam H. Ali, Rasha M. Hassan, Ahmed M. El Kerdawy, Mahmoud T. Abo-Elfadl, Heba M.I. Abdallah, Francesca Sciandra, Iman A.Y. Ghannam
    European Journal of Medicinal Chemistry.2024; 269: 116279.     CrossRef
  • The role of the methoxy group in approved drugs
    Debora Chiodi, Yoshihiro Ishihara
    European Journal of Medicinal Chemistry.2024; 273: 116364.     CrossRef
  • Thiazolidinedione an auspicious scaffold as PPAR-γ agonist: its possible mechanism to Manoeuvre against insulin resistant diabetes mellitus
    Sourav Basak, Anjali Murmu, Balaji Wamanrao Matore, Partha Pratim Roy, Jagadish Singh
    European Journal of Medicinal Chemistry Reports.2024; 11: 100160.     CrossRef
  • Quantitative determination of lobeglitazone sulfate and glimepiride in combined tablet by robust high‐performance thin layer chromatographic method
    Ashim Kumar Sen, Tantul Sarkar, Dhanya B. Sen, Rajesh A. Maheshwari, Aarti S. Zanwar, Rajesh L. Dumpala
    SEPARATION SCIENCE PLUS.2024;[Epub]     CrossRef
  • A chemical modification of a peroxisome proliferator-activated receptor pan agonist produced a shift to a new dual alpha/gamma partial agonist endowed with mitochondrial pyruvate carrier inhibition and antidiabetic properties
    Antonio Laghezza, Carmen Cerchia, Massimo Genovese, Roberta Montanari, Davide Capelli, Judith Wackerlig, Stefan Simic, Emanuele Falbo, Lucia Pecora, Rosalba Leuci, Leonardo Brunetti, Luca Piemontese, Paolo Tortorella, Abanish Biswas, Ravi Pratap Singh, Su
    European Journal of Medicinal Chemistry.2024; 275: 116567.     CrossRef
  • Efficacy and Safety of Novel Thiazolidinedione Rivoglitazone in Type-2 Diabetes a Meta-Analysis
    Deep Dutta, Jyoti Kadian, Indira Maisnam, Ashok Kumar, Saptarshi Bhattacharya, Meha Sharma
    Indian Journal of Endocrinology and Metabolism.2023; 27(4): 286.     CrossRef
  • Efficacy and safety of novel thiazolidinedione lobeglitazone for managing type-2 diabetes a meta-analysis
    Deep Dutta, Saptarshi Bhattacharya, Manoj Kumar, Priyankar K. Datta, Ritin Mohindra, Meha Sharma
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2023; 17(1): 102697.     CrossRef
  • Efficacy and safety of lobeglitazone, a new Thiazolidinedione, as compared to the standard of care in type 2 diabetes mellitus: A systematic review and meta-analysis
    Shashank R. Joshi, Saibal Das, Suja Xaviar, Shambo Samrat Samajdar, Indranil Saha, Sougata Sarkar, Shatavisa Mukherjee, Santanu Kumar Tripathi, Jyotirmoy Pal, Nandini Chatterjee
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2023; 17(1): 102703.     CrossRef
  • Synthesis, Characterization, and Pharmacokinetic Studies of Thiazolidine-2,4-Dione Derivatives
    Bushra Ansari, Haroon Khan, Muhammad Saeed Jan, Khalaf F. Alsharif, Khalid J. Alzahrani, Umer Rashid, Abdul Saboor Pirzada, Vinod Kumar Tiwari
    Journal of Chemistry.2023; 2023: 1.     CrossRef
  • Will lobeglitazone rival pioglitazone? A systematic review and critical appraisal
    Kalyan Kumar Gangopadhyay, Awadhesh Kumar Singh
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2023; 17(4): 102747.     CrossRef
  • Evaluation of pharmacokinetic interactions between lobeglitazone, empagliflozin, and metformin in healthy subjects
    Heeyoung Kim, Choon Ok Kim, Hyeonsoo Park, Min Soo Park, Dasohm Kim, Taegon Hong, Yesong Shin, Byung Hak Jin
    Translational and Clinical Pharmacology.2023; 31(1): 59.     CrossRef
  • Lobeglitazone, a novel thiazolidinedione, for secondary prevention in patients with ischemic stroke: a nationwide nested case-control study
    Joonsang Yoo, Jimin Jeon, Minyoul Baik, Jinkwon Kim
    Cardiovascular Diabetology.2023;[Epub]     CrossRef
  • Complementary effects of dapagliflozin and lobeglitazone on metabolism in a diet-induced obese mouse model
    Yun Kyung Lee, Tae Jung Oh, Ji In Lee, Bo Yoon Choi, Hyen Chung Cho, Hak Chul Jang, Sung Hee Choi
    European Journal of Pharmacology.2023; 957: 175946.     CrossRef
  • Current Clinical Trial Status and Future Prospects of PPAR-Targeted Drugs for Treating Nonalcoholic Fatty Liver Disease
    Shotaro Kamata, Akihiro Honda, Isao Ishii
    Biomolecules.2023; 13(8): 1264.     CrossRef
  • Lobeglitazone inhibits LPS-induced NLRP3 inflammasome activation and inflammation in the liver
    Hye-Young Seo, So-Hee Lee, Ji Yeon Park, Eugene Han, Sol Han, Jae Seok Hwang, Mi Kyung Kim, Byoung Kuk Jang, Kenji Fujiwara
    PLOS ONE.2023; 18(8): e0290532.     CrossRef
  • Insulin sensitizers in 2023: lessons learned and new avenues for investigation
    Jerry R. Colca, Steven P. Tanis, Rolf F. Kletzien, Brian N. Finck
    Expert Opinion on Investigational Drugs.2023; 32(9): 803.     CrossRef
  • Treatment of type 2 diabetes mellitus with stem cells and antidiabetic drugs: a dualistic and future-focused approach
    Priyamvada Amol Arte, Kanchanlata Tungare, Mustansir Bhori, Renitta Jobby, Jyotirmoi Aich
    Human Cell.2023; 37(1): 54.     CrossRef
  • Lobeglitazone and Its Therapeutic Benefits: A Review
    Balamurugan M, Sarumathy S, Robinson R
    Cureus.2023;[Epub]     CrossRef
  • Diabetes and diabesity in the view of proteomics, drug, and plant-derived remedies
    Mohammad Reza Haeri
    Journal of Research in Medical Sciences.2023;[Epub]     CrossRef
  • A double‐blind, Randomized controlled trial on glucose‐lowering EFfects and safety of adding 0.25 or 0.5 mg lobeglitazone in type 2 diabetes patients with INadequate control on metformin and dipeptidyl peptidase‐4 inhibitor therapy: REFIND study
    Soree Ryang, Sang Soo Kim, Ji Cheol Bae, Ji Min Han, Su Kyoung Kwon, Young Il Kim, Il Seong Nam‐Goong, Eun Sook Kim, Mi‐kyung Kim, Chang Won Lee, Soyeon Yoo, Gwanpyo Koh, Min Jeong Kwon, Jeong Hyun Park, In Joo Kim
    Diabetes, Obesity and Metabolism.2022; 24(9): 1800.     CrossRef
  • Effect of the addition of thiazolidinedione to sodium-glucose cotransporter 2 inhibitor therapy on lipid levels in type 2 diabetes mellitus: a retrospective study using Korean National Health Insurance Service data
    Taegyun Park, Kyungdo Han, Dongwook Shin, Jongho Park
    Cardiovascular Prevention and Pharmacotherapy.2022; 4(3): 114.     CrossRef
  • Design of Improved Antidiabetic Drugs: A Journey from Single to Multitarget Agents
    Vassiliki‐Panagiota Tassopoulou, Ariadni Tzara, Angeliki P. Kourounakis
    ChemMedChem.2022;[Epub]     CrossRef
  • A Real-World Study of Long-Term Safety and Efficacy of Lobeglitazone in Korean Patients with Type 2 Diabetes Mellitus
    Bo-Yeon Kim, Hyuk-Sang Kwon, Suk Kyeong Kim, Jung-Hyun Noh, Cheol-Young Park, Hyeong-Kyu Park, Kee-Ho Song, Jong Chul Won, Jae Myung Yu, Mi Young Lee, Jae Hyuk Lee, Soo Lim, Sung Wan Chun, In-Kyung Jeong, Choon Hee Chung, Seung Jin Han, Hee-Seok Kim, Ju-Y
    Diabetes & Metabolism Journal.2022; 46(6): 855.     CrossRef
  • Lobeglitazone Exerts Anti-Inflammatory Effect in Lipopolysaccharide-Induced Bone-Marrow Derived Macrophages
    Dabin Jeong, Wan-Kyu Ko, Seong-Jun Kim, Gong-Ho Han, Daye Lee, Seung-Hun Sheen, Seil Sohn
    Biomedicines.2021; 9(10): 1432.     CrossRef
Clinical Diabetes & Therapeutics
Predictors of the Therapeutic Efficacy and Consideration of the Best Combination Therapy of Sodium-Glucose Co-transporter 2 Inhibitors
Ji-Yeon Lee, Yongin Cho, Minyoung Lee, You Jin Kim, Yong-ho Lee, Byung-Wan Lee, Bong-Soo Cha, Eun Seok Kang
Diabetes Metab J. 2019;43(2):158-173.   Published online January 25, 2019
DOI: https://doi.org/10.4093/dmj.2018.0057
  • 6,566 View
  • 171 Download
  • 15 Web of Science
  • 15 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   
Background

We investigated the predictive markers for the therapeutic efficacy and the best combination of sodium-glucose co-transporter 2 (SGLT2) inhibitors (empagliflozin, dapagliflozin, and ipragliflozin) therapy in patients with type 2 diabetes mellitus (T2DM).

Methods

A total of 804 patients with T2DM who had taken SGLT2 inhibitor as monotherapy or an add-on therapy were analyzed. Multivariate regression analyses were performed to identify the predictors of SGLT2 inhibitor response including the classes of baseline anti-diabetic medications.

Results

After adjusting for age, sex, baseline body mass index (BMI), diabetes duration, duration of SGLT2 inhibitor use, initial glycosylated hemoglobin (HbA1c) level, estimated glomerular filtration rate (eGFR), and other anti-diabetic agent usage, multivariate analysis revealed that shorter diabetes duration, higher initial HbA1c and eGFR were associated with better glycemic response. However, baseline BMI was inversely correlated with glycemic status; lean subjects with well-controlled diabetes and obese subjects with inadequately controlled diabetes received more benefit from SGLT2 inhibitor treatment. In addition, dipeptidyl peptidase 4 (DPP4) inhibitor use was related to a greater reduction in HbA1c in patients with higher baseline HbA1c ≥7%. Sulfonylurea users experienced a larger change from baseline HbA1c but the significance was lost after adjustment for covariates and metformin and thiazolidinedione use did not affect the glycemic outcome.

Conclusion

A better response to SGLT2 inhibitors is expected in Korean T2DM patients who have higher baseline HbA1c and eGFR with a shorter diabetes duration. Moreover, the add-on of an SGLT2 inhibitor to a DPP4 inhibitor is likely to show the greatest glycemic response.

Citations

Citations to this article as recorded by  
  • Predictors of efficacy of Sodium‐GLucose Transporter‐2 inhibitors and Glucagon‐Like Peptide 1 receptor agonists: A retrospective cohort study
    Daniele Scoccimarro, Giacomo Cipani, Ilaria Dicembrini, Edoardo Mannucci
    Diabetes/Metabolism Research and Reviews.2024;[Epub]     CrossRef
  • Short-term effectiveness of dapagliflozin versus DPP-4 inhibitors in elderly patients with type 2 diabetes: a multicentre retrospective study
    M. L. Morieri, I. Raz, A. Consoli, M. Rigato, A. Lapolla, F. Broglio, E. Bonora, A. Avogaro, G. P. Fadini, Federica Ginestra, Gloria Formoso, Agostino Consoli, Francesco Andreozzi, Giorgio Sesti, Salvatore Turco, Luigi Lucibelli, Adriano Gatti, Raffaella
    Journal of Endocrinological Investigation.2023; 46(7): 1429.     CrossRef
  • Treatment effect heterogeneity following type 2 diabetes treatment with GLP1-receptor agonists and SGLT2-inhibitors: a systematic review
    Katherine G. Young, Eram Haider McInnes, Robert J. Massey, Anna R. Kahkoska, Scott J. Pilla, Sridharan Raghavan, Maggie A. Stanislawski, Deirdre K. Tobias, Andrew P. McGovern, Adem Y. Dawed, Angus G. Jones, Ewan R. Pearson, John M. Dennis, Deirdre K. Tobi
    Communications Medicine.2023;[Epub]     CrossRef
  • Predictors of HbA1c treatment response to add-on medication following metformin monotherapy: a population-based cohort study
    Wei Ying Tan, Wynne Hsu, Mong Li Lee, Ngiap Chuan Tan
    Scientific Reports.2023;[Epub]     CrossRef
  • Efficacy and Safety of Evogliptin Add-on Therapy to Dapagliflozin/Metformin Combinations in Patients with Poorly Controlled Type 2 Diabetes Mellitus: A 24-Week Multicenter Randomized Placebo-Controlled Parallel-Design Phase-3 Trial with a 28-Week Extensio
    Jun Sung Moon, Il Rae Park, Hae Jin Kim, Choon Hee Chung, Kyu Chang Won, Kyung Ah Han, Cheol-Young Park, Jong Chul Won, Dong Jun Kim, Gwan Pyo Koh, Eun Sook Kim, Jae Myung Yu, Eun-Gyoung Hong, Chang Beom Lee, Kun-Ho Yoon
    Diabetes & Metabolism Journal.2023; 47(6): 808.     CrossRef
  • Effect of Dapagliflozin as an Add-on Therapy to Insulin on the Glycemic Variability in Subjects with Type 2 Diabetes Mellitus (DIVE): A Multicenter, Placebo-Controlled, Double-Blind, Randomized Study
    Seung-Hwan Lee, Kyung-Wan Min, Byung-Wan Lee, In-Kyung Jeong, Soon-Jib Yoo, Hyuk-Sang Kwon, Yoon-Hee Choi, Kun-Ho Yoon
    Diabetes & Metabolism Journal.2021; 45(3): 339.     CrossRef
  • Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice
    Kana N. Miyata, Chao-Sheng Lo, Shuiling Zhao, Min-Chun Liao, Yuchao Pang, Shiao-Ying Chang, Junzheng Peng, Matthias Kretzler, Janos G. Filep, Julie R. Ingelfinger, Shao-Ling Zhang, John S.D. Chan
    Clinical Science.2021; 135(7): 943.     CrossRef
  • Sodium-Glucose Cotransporter-2 Inhibitor for Renal Function Preservation in Patients with Type 2 Diabetes Mellitus: A Korean Diabetes Association and Korean Society of Nephrology Consensus Statement
    Tae Jung Oh, Ju-Young Moon, Kyu Yeon Hur, Seung Hyun Ko, Hyun Jung Kim, Taehee Kim, Dong Won Lee, Min Kyong Moon
    Diabetes & Metabolism Journal.2020; 44(4): 489.     CrossRef
  • Differential indication for SGLT-2 inhibitors versus GLP-1 receptor agonists in patients with established atherosclerotic heart disease or at risk for congestive heart failure
    Francesco Giorgino, Irene Caruso, Julia Moellmann, Michael Lehrke
    Metabolism.2020; 104: 154045.     CrossRef
  • Clinical Predictors of the Hypoglycemic Effect of Sodium–Glucose Co-transporter-2 Inhibitors in Hyperuricemic Patients: A Retrospective Descriptive Observational Study
    Toshinori Hirai, Yuya Kawagoe, Motoki Kei, Ryuichi Ogawa, Toshimasa Itoh
    Biological and Pharmaceutical Bulletin.2020; 43(5): 782.     CrossRef
  • Sodium-glucose cotransporter-2 inhibitor for renal function preservation in patients with type 2 diabetes mellitus: A Korean Diabetes Association and Korean Society of Nephrology consensus statement
    Tae Jung Oh, Ju-Young Moon, Kyu Yeon Hur, Seung Hyun Ko, Hyun Jung Kim, Taehee Kim, Dong Won Lee, Min Kyong Moon
    Kidney Research and Clinical Practice.2020; 39(3): 269.     CrossRef
  • Efficacy of Once-Weekly Semaglutide vs Empagliflozin Added to Metformin in Type 2 Diabetes: Patient-Level Meta-analysis
    Ildiko Lingvay, Matthew S Capehorn, Andrei-Mircea Catarig, Pierre Johansen, Jack Lawson, Anna Sandberg, Robert Shaw, Abby Paine
    The Journal of Clinical Endocrinology & Metabolism.2020; 105(12): e4593.     CrossRef
  • Letter: Predictors of the Therapeutic Efficacy and Consideration of the Best Combination Therapy of Sodium-Glucose Co-transporter 2 Inhibitors (Diabetes Metab J 2019;43:158–73)
    Kyung-Soo Kim
    Diabetes & Metabolism Journal.2019; 43(3): 377.     CrossRef
  • Response: Predictors of the Therapeutic Efficacy and Consideration of the Best Combination Therapy of Sodium-Glucose Co-transporter 2 Inhibitors (Diabetes Metab J 2019;43:158–73)
    Ji-Yeon Lee, Eun Seok Kang
    Diabetes & Metabolism Journal.2019; 43(3): 379.     CrossRef
  • An Age of Sodium-Glucose Cotransporter-2 Inhibitor Priority: Are We Ready?
    Ji A Seo
    Diabetes & Metabolism Journal.2019; 43(5): 578.     CrossRef
Complications
Glycated Albumin Is a More Useful Glycation Index than HbA1c for Reflecting Renal Tubulopathy in Subjects with Early Diabetic Kidney Disease
Ji Hye Huh, Minyoung Lee, So Young Park, Jae Hyeon Kim, Byung-Wan Lee
Diabetes Metab J. 2018;42(3):215-223.   Published online May 2, 2018
DOI: https://doi.org/10.4093/dmj.2017.0091
  • 4,888 View
  • 57 Download
  • 10 Web of Science
  • 10 Crossref
AbstractAbstract PDFPubReader   
Background

The aim of this study was to investigate which glycemic parameters better reflect urinary N-acetyl-β-D-glucosaminidase (uNAG) abnormality, a marker for renal tubulopathy, in subjects with type 2 diabetes mellitus (T2DM) subjects with normoalbuminuria and a normal estimated glomerular filtration rate (eGFR).

Methods

We classified 1,061 participants with T2DM into two groups according to uNAG level—normal vs. high (>5.8 U/g creatinine)—and measured their biochemical parameters.

Results

Subjects with high uNAG level had significantly higher levels of fasting and stimulated glucose, glycated albumin (GA), and glycosylated hemoglobin (HbA1c) and lower levels of homeostasis model assessment of β-cell compared with subjects with normal uNAG level. Multiple linear regression analyses showed that uNAG was significantly associated with GA (standardized β coefficient [β]=0.213, P=0.016), but not with HbA1c (β=−0.137, P=0.096) or stimulated glucose (β=0.095, P=0.140) after adjusting confounding factors. In receiver operating characteristic analysis, the value of the area under the curve (AUC) for renal tubular injury of GA was significantly higher (AUC=0.634; 95% confidence interval [CI], 0.646 to 0.899) than those for HbA1c (AUC=0.598; 95% CI, 0.553 to 0.640), stimulated glucose (AUC=0.594; 95% CI, 0.552 to 0.636), or fasting glucose (AUC=0.558; 95% CI, 0.515 to 0.600). The optimal GA cutoff point for renal tubular damage was 17.55% (sensitivity 59%, specificity 62%).

Conclusion

GA is a more useful glycation index than HbA1c for reflecting renal tubulopathy in subjects with T2DM with normoalbuminuria and normal eGFR.

Citations

Citations to this article as recorded by  
  • Glucagon-Like Peptide 1 Receptor Agonist Improves Renal Tubular Damage in Mice with Diabetic Kidney Disease
    Ran Li, Dunmin She, Zhengqin Ye, Ping Fang, Guannan Zong, Yong Zhao, Kerong Hu, Liya Zhang, Sha Lei, Keqin Zhang, Ying Xue
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2022; Volume 15: 1331.     CrossRef
  • Use of glycated albumin for the identification of diabetes in subjects from northeast China
    Guo-Yan Li, Hao-Yu Li, Qiang Li
    World Journal of Diabetes.2021; 12(2): 149.     CrossRef
  • Diabetic Kidney Disease, Cardiovascular Disease and Non-Alcoholic Fatty Liver Disease: A New Triumvirate?
    Carolina M. Perdomo, Nuria Garcia-Fernandez, Javier Escalada
    Journal of Clinical Medicine.2021; 10(9): 2040.     CrossRef
  • Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition
    Nitin A. Das, Andrea J. Carpenter, Anthony Belenchia, Annayya R. Aroor, Makoto Noda, Ulrich Siebenlist, Bysani Chandrasekar, Vincent G. DeMarco
    Cellular Signalling.2020; 68: 109506.     CrossRef
  • Glycated Plasma Proteins as More Sensitive Markers for Glycemic Control in Type 1 Diabetes
    Lina Zhang, Qibin Zhang
    PROTEOMICS – Clinical Applications.2020;[Epub]     CrossRef
  • Glycated albumin and its variability: Clinical significance, research progress and overall review
    Dongjun Dai, Yifei Mo, Jian Zhou
    Obesity Medicine.2020; 19: 100256.     CrossRef
  • Hepatic fibrosis is associated with total proteinuria in Korean patients with type 2 diabetes
    Eugene Han, Yongin Cho, Kyung-won Kim, Yong-ho Lee, Eun Seok Kang, Bong-Soo Cha, Byung-wan Lee
    Medicine.2020; 99(33): e21038.     CrossRef
  • Increasing waist circumference is associated with decreased levels of glycated albumin
    Yiting Xu, Xiaojing Ma, Yun Shen, Yufei Wang, Jian Zhou, Yuqian Bao
    Clinica Chimica Acta.2019; 495: 118.     CrossRef
  • Glucometabolic characteristics and higher vascular complication risk in Korean patients with type 2 diabetes with non-albumin proteinuria
    Yongin Cho, Yong-ho Lee, Eun Seok Kang, Bong-soo Cha, Byung-wan Lee
    Journal of Diabetes and its Complications.2019; 33(8): 585.     CrossRef
  • Association of urinary acidification function with the progression of diabetic kidney disease in patients with type 2 diabetes
    Huanhuan Zhu, Xi Liu, Chengning Zhang, Qing Li, Xiaofei An, Simeng Liu, Lin Wu, Bo Zhang, Yanggang Yuan, Changying Xing
    Journal of Diabetes and its Complications.2019; 33(11): 107419.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP