Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Author index

Page Path
HOME > Browse > Author index
Search
Eugene Shin 1 Article
Basic Research
Article image
Ipragliflozin, an SGLT2 Inhibitor, Ameliorates High-Fat Diet-Induced Metabolic Changes by Upregulating Energy Expenditure through Activation of the AMPK/ SIRT1 Pathway
Ji-Yeon Lee, Minyoung Lee, Ji Young Lee, Jaehyun Bae, Eugene Shin, Yong-ho Lee, Byung-Wan Lee, Eun Seok Kang, Bong-Soo Cha
Diabetes Metab J. 2021;45(6):921-932.   Published online February 22, 2021
DOI: https://doi.org/10.4093/dmj.2020.0187
  • 9,615 View
  • 434 Download
  • 21 Web of Science
  • 22 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that exhibit multiple extraglycemic effects. However, there are conflicting results regarding the effects of SGLT2 inhibition on energy expenditure and thermogenesis. Therefore, we investigated the effect of ipragliflozin (a selective SGLT2 inhibitor) on energy metabolism.
Methods
Six-week-old male 129S6/Sv mice with a high propensity for adipose tissue browning were randomly assigned to three groups: normal chow control, 60% high-fat diet (HFD)-fed control, and 60% HFD-fed ipragliflozin-treated groups. The administration of diet and medication was continued for 16 weeks.
Results
The HFD-fed mice became obese and developed hepatic steatosis and adipose tissue hypertrophy, but their random glucose levels were within the normal ranges; these features are similar to the metabolic features of a prediabetic condition. Ipragliflozin treatment markedly attenuated HFD-induced hepatic steatosis and reduced the size of hypertrophied adipocytes to that of smaller adipocytes. In the ipragliflozin treatment group, uncoupling protein 1 (Ucp1) and other thermogenesis-related genes were significantly upregulated in the visceral and subcutaneous adipose tissue, and fatty acid oxidation was increased in the brown adipose tissue. These effects were associated with a significant reduction in the insulin-to-glucagon ratio and the activation of the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway in the liver and adipose tissue.
Conclusion
SGLT2 inhibition by ipragliflozin showed beneficial metabolic effects in 129S6/Sv mice with HFD-induced obesity that mimics prediabetic conditions. Our data suggest that SGLT2 inhibitors, through their upregulation of energy expenditure, may have therapeutic potential in prediabetic obesity.

Citations

Citations to this article as recorded by  
  • SGLT2 inhibitors and AMPK: The road to cellular housekeeping?
    Nasser Safaie, Shahab Masoumi, Shaban Alizadeh, Pourya Mirzajanzadeh, Hamid Reza Nejabati, Mobasher Hajiabbasi, Vahid Alivirdiloo, Neda Chobdari Basmenji, Aysan Derakhshi Radvar, Ziba Majidi, Yousef Faridvand
    Cell Biochemistry and Function.2024;[Epub]     CrossRef
  • Proximal tubule hypertrophy and hyperfunction: a novel pathophysiological feature in disease states
    Mehmet Kanbay, Sidar Copur, Mustafa Guldan, Lasin Ozbek, Alper Hatipoglu, Adrian Covic, Francesca Mallamaci, Carmine Zoccali
    Clinical Kidney Journal.2024;[Epub]     CrossRef
  • Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value
    Yafei Xie, Yujie Wei, Dan Li, Jie Pu, Hong Ding, Xiaowei Zhang
    Journal of Cardiovascular Pharmacology.2023; 81(1): 4.     CrossRef
  • Current Treatment Options, Including Diet, Exercise, and Medications
    Mazen Noureddin, Manal F. Abdelmalek
    Clinics in Liver Disease.2023; 27(2): 397.     CrossRef
  • SGLT2 Inhibitors and Kidney Diseases: A Clinical Perspective
    Panagiotis Theofilis, Rigas G. Kalaitzidis
    Current Medicinal Chemistry.2023; 30(23): 2595.     CrossRef
  • Treatment of obesity-related diabetes: significance of thermogenic adipose tissue and targetable receptors
    Ruping Pan, Jiadai Liu, Yong Chen
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • Immunomodulatory Effects of SGLT2 Inhibitors—Targeting Inflammation and Oxidative Stress in Aging
    Ema Schönberger, Vjera Mihaljević, Kristina Steiner, Sandra Šarić, Tomislav Kurevija, Ljiljana Trtica Majnarić, Ines Bilić Ćurčić, Silvija Canecki-Varžić
    International Journal of Environmental Research and Public Health.2023; 20(17): 6671.     CrossRef
  • SGLT‐2 inhibitors enhance the effect of metformin to ameliorate hormonal changes and inflammatory markers in a rat PCOS model
    Manal Moustafa Mahmoud, Laila Ahmed Rashed, Somia Abdulatif Soliman, Safaa Mostafa Sayed, Omneya Kamel, Samaa Samir Kamar, Rania El Sayed Hussien
    Physiological Reports.2023;[Epub]     CrossRef
  • Resting energy expenditure based on equation estimation can predict renal outcomes in patients with type 2 diabetes mellitus and biopsy-proven diabetic kidney disease
    Xiang Xiao, Shuming Ji, Junlin Zhang, Deying Kang, Fang Liu
    Renal Failure.2023;[Epub]     CrossRef
  • Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy
    Zhicheng Gao, Jiaqi Bao, Yilan Hu, Junjie Tu, Lifang Ye, Lihong Wang
    Current Drug Targets.2023; 24(13): 1009.     CrossRef
  • SIRT1 mediates the inhibitory effect of Dapagliflozin on EndMT by inhibiting the acetylation of endothelium Notch1
    Weijie Wang, Yilan Li, Yanxiu Zhang, Tao Ye, Kui Wang, Shuijie Li, Yao Zhang
    Cardiovascular Diabetology.2023;[Epub]     CrossRef
  • Direct cardio-protection of Dapagliflozin against obesity-related cardiomyopathy via NHE1/MAPK signaling
    Ke Lin, Na Yang, Wu Luo, Jin-fu Qian, Wei-wei Zhu, Shi-ju Ye, Chen-xin Yuan, Di-yun Xu, Guang Liang, Wei-jian Huang, Pei-ren Shan
    Acta Pharmacologica Sinica.2022; 43(10): 2624.     CrossRef
  • Pleiotropic effects of SGLT2 inhibitors and heart failure outcomes
    Panagiotis Theofilis, Marios Sagris, Evangelos Oikonomou, Alexios S. Antonopoulos, Gerasimos Siasos, Kostas Tsioufis, Dimitris Tousoulis
    Diabetes Research and Clinical Practice.2022; 188: 109927.     CrossRef
  • Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models
    Sandra Feijóo-Bandín, Alana Aragón-Herrera, Manuel Otero-Santiago, Laura Anido-Varela, Sandra Moraña-Fernández, Estefanía Tarazón, Esther Roselló-Lletí, Manuel Portolés, Oreste Gualillo, José Ramón González-Juanatey, Francisca Lago
    International Journal of Molecular Sciences.2022; 23(10): 5634.     CrossRef
  • Potential molecular mechanism of action of sodium-glucose co-transporter 2 inhibitors in the prevention and management of diabetic retinopathy
    Lia Meuthia Zaini, Arief S Kartasasmita, Tjahjono D Gondhowiardjo, Maimun Syukri, Ronny Lesmana
    Expert Review of Ophthalmology.2022; 17(3): 199.     CrossRef
  • New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure
    Juexing Li, Lei Zhou, Hui Gong
    Frontiers in Cardiovascular Medicine.2022;[Epub]     CrossRef
  • Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis
    Milton Packer
    Circulation.2022; 146(18): 1383.     CrossRef
  • Nutraceutical activation of Sirt1: a review
    James J DiNicolantonio, Mark F McCarty, James H O'Keefe
    Open Heart.2022; 9(2): e002171.     CrossRef
  • Dapagliflozin Restores Impaired Autophagy and Suppresses Inflammation in High Glucose-Treated HK-2 Cells
    Jing Xu, Munehiro Kitada, Yoshio Ogura, Haijie Liu, Daisuke Koya
    Cells.2021; 10(6): 1457.     CrossRef
  • Could Sodium/Glucose Co-Transporter-2 Inhibitors Have Antiarrhythmic Potential in Atrial Fibrillation? Literature Review and Future Considerations
    Dimitrios A. Vrachatis, Konstantinos A. Papathanasiou, Konstantinos E. Iliodromitis, Sotiria G. Giotaki, Charalampos Kossyvakis, Konstantinos Raisakis, Andreas Kaoukis, Vaia Lambadiari, Dimitrios Avramides, Bernhard Reimers, Giulio G. Stefanini, Michael C
    Drugs.2021; 81(12): 1381.     CrossRef
  • Differential Pathophysiological Mechanisms in Heart Failure With a Reduced or Preserved Ejection Fraction in Diabetes
    Milton Packer
    JACC: Heart Failure.2021; 9(8): 535.     CrossRef
  • Ketone bodies: from enemy to friend and guardian angel
    Hubert Kolb, Kerstin Kempf, Martin Röhling, Martina Lenzen-Schulte, Nanette C. Schloot, Stephan Martin
    BMC Medicine.2021;[Epub]     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP