Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal


Author index

Page Path
HOME > Browse > Author index
Hyang Sook Lim  (Lim HS) 1 Article
Glucose-dependent Insulin Secretion from Genetically Engineered K-cells Using EBV-based Episomal Vector.
Ju Hee Kim, Sung Dae Moon, Seung Hyun Ko, Yu Bai Ahn, Ki Ho Song, Hyang Sook Lim, Sook Kyung Lee, Soon Jip Yoo, Hyun Shik Son, Kun Ho Yoon, Bong Yun Cha, Ho Young Son, Sung Joo Kim, Je Ho Han
Korean Diabetes J. 2007;31(1):9-21.   Published online January 1, 2007
  • 2,456 View
  • 17 Download
  • 2 Crossref
AbstractAbstract PDF
Type 1 diabetes mellitus is an autoimmune disease resulting in destruction of the pancreatic beta cells. Insulin gene therapy for these patients has been vigorously researched. The strategy for achieving glucose-dependent insulin secretion in gene therapy relies on glucose-responsive transcription of insulin mRNA and the constitutive secretory pathway of target non-beta cells. We observed that genetically engineered K-cells using Epstein-Barr virus (EBV)-based episomal vector can produce glucose-regulated insulin production. METHODS: Green fluorescent protein (GFP) or rat-preproinsulin (PPI) expression cassette transcriptionally controlled by the promoter of glucose dependent insulinotropic peptide (GIPP) is fused to pCEP4 containing the origin of replication (oriP) and Epstein-Barr virus nuclear antigen 1 (EBNA-1). CMV promoter was replaced by subcloning the GIPP into pCEP4 to generate pGIPP/CEP4. Two recombinant EBV-based episomal vectors, pGIPP/GFP/CEP4 and pGIPP/PPI/CEP4, were constructed. pGIPP/GFP/CEP4 and pGIPP/PPI/CEP4 containing K-cell specific GIPP were co-transfected into STC-1. K-cell was isolated from the clonal expansion of the fluorescent cells selected by hygromycin treatment in STC-1, and were analyzed for the expression of glucokinase (GK) or transcription factors involved in pancreas development. K-cells concurrently transfected with pGIPP/PPI/CEP4 and pGIPP/GFP/CEP4 were analyzed for the transcripts of PPI by RT-PCR, and for the glucose dependent insulin expression by immunocytochemistry or insulin assay using ultra-sensitive rat-specific insulin ELISA kit. RESULT: STC-1 was stably-transfected with pGIPP/GFP/CEP4 along with pGIPP/PPI/CEP4. Genetically selected fluorescent K-cells expressed GK and transcription factors involved in pancreas development. And K-cells transfected with pGIPP/PPI/CEP4 contained detectable levels of PPI transcripts and showed glucose-dependent immunoreactive insulin secretion. CONCLUSION: We identified genetically engineered K-cells which exert a glucose-dependent insulin expression using EBV-based episomal vector. The similarities between K-cells and pancreatic beta cells support that K-cells may make effective and ideal targeting cells for insulin gene therapy or alternative cell therapy.


Citations to this article as recorded by  
  • Relationship of traditional and nontraditional cardiovascular risk factors to coronary artery calcium in type 2 diabetes
    Ju-Yeon Sim, Ju-Hee Kim, Yu-Bae Ahn, Ki-Ho Song, Je-Ho Han, Bong-Yun Cha, Sook-Kyung Lee, Sung-Dae Moon
    Korean Diabetes Journal.2009; 33(6): 466.     CrossRef
  • Transdifferentiation of Enteroendocrine K-cells into Insulin-expressing Cells
    Esder Lee, Jun Mo Yu, Min Kyung Lee, Gyeong Ryul Ryu, Seung-Hyun Ko, Yu-Bae Ahn, Sung-Dae Moon, Ki-Ho Song
    Korean Diabetes Journal.2009; 33(6): 475.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer