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Background: Previously developed prediction models for type 2 diabetes mellitus (T2DM) have limited performance. We devel-
oped a deep learning (DL) based model using a cohort representative of the Korean population.
Methods: This study was conducted on the basis of the National Health Insurance Service-Health Screening (NHIS-HEALS) co-
hort of Korea. Overall, 335,302 subjects without T2DM at baseline were included. We developed the model based on 80% of the 
subjects, and verified the power in the remainder. Predictive models for T2DM were constructed using the recurrent neural net-
work long short-term memory (RNN-LSTM) network and the Cox longitudinal summary model. The performance of both 
models over a 10-year period was compared using a time dependent area under the curve.
Results: During a mean follow-up of 10.4±1.7 years, the mean frequency of periodic health check-ups was 2.9±1.0 per subject. 
During the observation period, T2DM was newly observed in 8.7% of the subjects. The annual performance of the model created 
using the RNN-LSTM network was superior to that of the Cox model, and the risk factors for T2DM, derived using the two mod-
els were similar; however, certain results differed.
Conclusion: The DL-based T2DM prediction model, constructed using a cohort representative of the population, performs bet-
ter than the conventional model. After pilot tests, this model will be provided to all Korean national health screening recipients in 
the future.
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INTRODUCTION

The rising global prevalence of diabetes mellitus (DM) and its 
related complications have increased the burden on the global 
health care system [1]. Recent reports suggest that one in 11 
adults worldwide have DM, and it is considered to be one of 
the major causes of reduced life expectancy [2].

However, type 2 diabetes mellitus (T2DM) is a preventable 
disease. Early screening and appropriate interventions may 

prevent the onset and progress of T2DM. Previous clinical tri-
als have demonstrated the efficacy of preventive interventions 
in subjects at high-risk of T2DM [3,4]. In addition to prevent-
ing the onset of T2DM, interventions may prevent the occur-
rence of long-term complications [5,6]; reports suggest that 
this approach is cost-effective [7].

The effective prevention and management of T2DM in the 
population necessitates the accurate identification of subjects 
who may develop T2DM. Several researchers have attempted 
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to develop models to predict the individual risk of T2DM [8-
10]. However, the existing prediction model does not include 
various risk factors for T2DM, and its predictive power is lim-
ited [8,10-12].

Recently, with the development of artificial intelligence tech-
nology, efforts are being made to apply new techniques such as 
deep learning (DL) to existing disease models. DL is an algo-
rithm used in the field of computer science, that identifies the 
patterns of large datasets and predicts the results [13,14]. 

It is known that the prediction accuracy of DL in various im-
aging types is comparable with that of skilled experts [15,16], 
and applications in clinical practice are also rising. Attempts 
have also been made to employ DL in the prediction of various 
chronic diseases including T2DM [17,18]. However, till date, 
the proposed model does not outperform conventional tools 
[19-22].

In this study, we constructed a DL-based T2DM prediction 
model using large scale longitudinal cohort data representative 
of the Korean population. We then compared this model to a 
conventional Cox regression based model and evaluated its 
performance and clinical utility.

METHODS

NHIS-Health Screening cohort
Except for 3% of ‘medical protection’ beneficiaries, 97% of the 
total Korean population is covered by a single health insurance 
system, namely, the National Health Insurance of Korea. Infor-
mation on individual utilization of medical facilities, medica-
tions, and diagnostic codes, configured in the form of Interna-
tional Classification of Diseases, 10th revision (ICD-10) are ar-
chived in the National Health Insurance Service (NHIS) data-
base [23]. In addition, the NHIS provides a biennial health 
check-up program for all beneficiaries over 40 years of age, that 
comprises evaluation of anthropometric parameters, a self-ad-
ministered questionnaire on health related behavior, past med-
ical history, family history, and laboratory tests.

The NHIS-Health Screening (NHIS-HEALS) cohort was es-
tablished by including approximately 10% of the entire popula-
tion of NHIS health check-ups between 2002 and 2003 [24]. 
The cohort comprises 514,795 individuals, and has been sys-
temically sampled to represent the entire Korean population. 
The clinical course of the included subjects will be observed 
until follow-up is feasible, i.e., till death or immigration. It is 
currently possible to use the follow-up data until 2013 for re-

search, after approval from the NHIS. All data for this cohort 
are provided to researchers after anonymization and de-identi-
fication.

Study subjects
From the overall cohort of 514,795 subjects, we excluded those 
with pre-existing type 1 DM or T2DM from the self-reported 
past medical history, and those with a fasting blood glucose 
(FBG) ≥126 mg/mL on baseline laboratory tests. We then ex-
cluded those with a diagnosis of DM (based on ICD-10 codes 
E10.x-E14.x, O24.x), or with prescriptions for anti-diabetic 
medication (oral hypoglycemic agents or insulin) in the health 
insurance claims database at the time of the baseline check-up. 
We also excluded those who died in 2002 to 2003, since serial 
clinical data on health check-ups or follow-ups were unavail-
able for determining the incidence of T2DM. Finally, 335,302 
individuals were selected as candidates for the study, and only 
the latest health check-up data from the 2002 to 2006 period 
were included after the baseline date; 80% (268,241) of the 
subjects were randomly selected for inclusion during model 
development (Supplementary Fig. 1).

Clinical variables
All procedures of the national healthcare check-up were per-
formed by experts according to standardized protocols [24]. 
The anthropometric parameters of systolic blood pressure 
(SBP), diastolic blood pressure (DBP), and body mass index 
(BMI) were used in this study. Among laboratory tests, FBG, 
total cholesterol (TC), aspartate aminotransferase, alanine 
aminotransferase, gamma-glutamyl transferase, and dip-stick 
based proteinuria tests were used. The personal behavior, past 
medical history, and family history of subjects were investigat-
ed using a questionnaire. For evaluating personal behavior, 
smoking, alcohol, and exercise habits were investigated. These 
three measures were classified as “yes” or “no” for current 
smoking status, “drinker” or “non-drinker” for alcohol con-
sumption, and “yes” or “no” for exercise. The past medical and 
family history were examined for the presence of hypertension, 
heart disease, stroke, and other illnesses (including malignan-
cy). The presence or absence of a condition was determined by 
the availability of a diagnosis from a doctor. Details of variables 
included in the analyses have been presented in Table 1. Addi-
tionally, in cases of missing data, multiple imputations were 
used under fully conditional specification [25] using the ma-
chine learning procedure [26].
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Identification of new DM cases
The new onset of T2DM among the subjects was confirmed by 
their ICD-10 codes (E11.x-E14.x), prescriptions of anti-diabet-
ic medications (oral anti-diabetic medications and/or insulin), 
and FBG levels. This definition is based on the consensus of 
relevant findings widely used in previous studies [27,28].

Construction of prediction models
Prediction models were constructed using records from base-
line and follow-up visits (Supplementary Table 1). The inter-
vals were defined as the periods from the first health check-up 
date to the date of diagnosis of T2DM, and to the end of the 
study for non-T2DM. The records used for analysis included 
health check-up data from the 2002 to 2006 period. For in-

Table 1. Baseline characteristics of the training set

Variable All (n=268,241) Missing, %
Incident T2DM

Yes (n=23,420) Missing, % No (n=244,821) Missing, %

Age, yr 51.8±9.1 0.00 54.6±9.3 0.00 51.5±9.0 0.00

Male sex 149,723 (55.82) 0.00 14,306 (61.08) 0.00 135,417 (55.31) 0.00

BMI, kg/m2 23.9±2.9 0.08 25.2±3.1 0.08 23.8±2.8 0.08

SBP, mm Hg 126.0±17.6 0.03 132.0±18.4 0.02 125.4±17.4 0.04

DBP, mm Hg 79.3±11.6 0.05 82.5±11.9 0.03 79.0±11.5 0.06

FBG, mg/dL 90.8±12.6 0.10 97.6±14.0 0.10 90.2±12.3 0.10

TC, mg/dL 199.6±37.3 0.14 208.3±39.7 0.12 198.8±36.9 0.14

Hemoglobin, g/dL 14.0±1.5 0.09 14.2±1.5 0.09 13.9±1.5 0.09

AST, IU/L 26.5±16.4 0.08 30.4±20.7 0.06 26.1±15.9 0.08

ALT, IU/L 25.5±20.4 0.08 32.4±25.2 0.07 24.8±19.8 0.08

GGT, IU/L 35.5±47.2 0.08 51.7±69.9 0.07 34.0±44.1 0.08

Proteinuria 4,048 (1.51) 0.25 594 (2.54) 0.30 3,454 (1.41) 0.24

Smoking 85,774 (31.98) 4.35 8,718 (37.22) 4.51 77,056 (31.47) 4.34

Alcohol 118,972 (44.35) 1.82 10,886 (46.48) 1.79 108,086 (44.15) 1.83

Exercise 113,809 (42.43) 3.01 9,450 (40.35) 3.18 104,359 (42.63) 2.99

Personal history

   Hypertension 17,365 (6.47) 0.00 2,849 (12.16) 0.00 14,516 (5.93) 0.00

   Heart disease 2,709 (1.01) 0.00 428 (1.83) 0.00 2,281 (0.93) 0.00

   Stroke 901 (0.34) 0.00 118 (0.50) 0.00 783 (0.32) 0.00

   Othersa 27,406 (10.22) 0.00 2,708 (11.56) 0.00 24,698 (10.09) 0.00

Family history

   Hypertension 22,306 (8.32) 11.58 2,056 (8.78) 11.99 20,250 (8.27) 11.54

   Heart disease 7,910 (2.95) 12.07 650 (2.78) 12.40 7,260 (2.97) 12.04

   Stroke 15,259 (5.69) 11.81 1,342 (5.73) 12.15 13,917 (5.68) 11.78

   DM 14,778 (5.51) 11.83 1,689 (7.21) 12.00 13,089 (5.35) 11.81

   Othersa 39,946 (14.89) 11.65 3,031 (12.94) 12.03 36,915 (15.08) 11.61

Follow-up, yr 10.4±1.7 0.00 6.7±2.6 0.00 10.8±1.1 0.00

Check-up, n 2.9±1.0 0.00 2.8±1.0 0.00 2.9±1.0 0.00

Values are presented as mean±standard deviation or number (%).
T2DM, type 2 diabetes mellitus; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; 
TC, total cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase.
aMalignancy.
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stance, if a patient diagnosed with T2DM in 2005 had two 
health check-ups in 2002 and 2004, the analysis used both 
health check-up records, and if a patient with T2DM in 2009 
had a health check-up four times a year between 2002 and 
2008, only the health check-up data available between 2002 
and 2006 was used. This controlled the difference in the 
amount of data that the subjects had in the check-up records, 
by adjusting their amount. 

The Cox regression model was first employed using longitu-
dinal data, with higher accuracy compared to a single mea-
surement method; this method has been described earlier to 
compare DL with longitudinal data. The Cox regression model 
used the mean, standard deviations (SDs), minimum and 
maximum values for continuous variables, and the mean and 
SDs for categorical variables; these were computed from the 
periodic health check-up data. The detailed methods for this 
Cox regression model using longitudinal data, and its im-
proved accuracy over single-measures, have been explained 
previously [29]. 

For the DL algorithm, a recurrent neural network-long 
short-term memory (RNN-LSTM) network was used [30]. 
The variables used in the DL algorithm were the same as those 
used in the Cox regression model, with longitudinal data. We 
designed the LSTM model using the following structures: to 
optimize algorithm, RMSProp was used to update parameters 
through back-propagation [31], and hyper-parameters at a 
learning rate of 0.01 were constructed with a dropout probabil-
ity of 50%, and a mini-batch of 64. The exact answer was one-
hot encoded to be used as cross entropy in a loss function; 
there were two classes. The particulars of DL and the model 
building process have been proven (Appendix 1).

Converting the output variables for longitudinal study 
The use of a Machine Learning-LSTM to determine the occur-
rence of disease at a certain point in time needed to be exam-
ined. As in previous studies using vector variables, we convert-
ed binary into multi-class output variables, which are vector 
types [32-35]. We analyzed the case every year through output 
variable conversion to identify the specific point in time at 
which a disease occurred. In the output layer, each node ex-
presses a time interval from 1 to 10 years, at intervals of 1 year. 
The value of each node is the survival probability for that point 
in time. The probability of survival after disease occurrence is 
0, and the probability of a disease occurring after the disease-
free survival time for censored cases are estimated by the Ka-

plan-Meier survival function. The predicted outputs are the 
probability of survival at each time [34].

Solution to the problem of understanding classification 
decisions
In order to overcome problems that cannot explain the reason 
for classification, and to identify the effects of input variables, 
layer-wise relevance propagation (LRP) [36], one of the Ex-
plainable Artificial Intelligence (XAI) techniques used in arti-
ficial neural networks, were used [37,38].

The order of each variable was sorted in descending order by 
calculating the mean for the entire LRP output value for each 
input sample. The number of feature variables was n, the num-
ber of input samples was m, and the output value of the predic-
tion model was o={o1… om}, the ranking of feature variables 
was expressed as follows.

                                              n      m

rank(o)=desc(∑ ∑ lrpi (oj))
                                            i=0  j=0

Using this technique, we demonstrated the influence of fea-
ture variables that were used for building the model.

Evaluation of prediction performance
The performance of the constructed model was evaluated in 
the validation dataset, which included 20% of the subjects. We 
evaluated the area under the curve (AUC) every year by com-
paring the survival probability based on Cox regression, and 
the probability of DL using the actual answer. Therefore, using 
calculation of time dependent AUC each year, we confirmed 
the predicted performance of our models, the Cox regression 
and DL [39,40]. The calibration was used to compare observed 
with predicted event probabilities.

Statistical tools
All statistical analyses were conducted using the SAS version 
9.4 (SAS Inc., Cary, NC, USA) and R version 3.3.3 (www.R-
project.org) statistical software packages. 

Ethical statement
This study was approved by the Institutional Review Board 
(IRB) of the Yonsei University, Severance Hospital, Seoul, Ko-
rea (IRB no. 4-2016-0383). The requirement for informed con-
sent was waived by the IRB as de-identified data was used for 
analyses.
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RESULTS

Characteristics of the subjects
The mean age of subjects in the training set was 51.8±9.1 
years, and 149,723 (55.82%) were male (Table 1). The mean 
BMI, SBP, and DBP were 23.9±2.9 kg/m2, 126.0±17.6 mm Hg, 
and 79.3±11.6 mm Hg, respectively. Laboratory test results 
showed that mean FBG was 90.8±12.6 mg/dL, TC was 199.6± 
37.3 mg/dL, and proteinuria was present in 1.51% of the total 
subjects. Among the subjects, 85,774 (31.98%) were current 
smokers and 118,972 (44.35%) were regular alcohol drinkers; 
113,809 (42.43%) exercised regularly. The mean duration of 
follow-up of the cohort was 10.4±1.7 years; 2.9±1.0 national 
health check-ups were performed during this period. The 
minimum and maximum health check-up frequencies per 
person were 2 and 5, respectively. In the selected individuals, 
23,420 (8.7%) were diagnosed with T2DM during the follow-
up period.

The characteristics of the validation and training sets were 
similar (Supplementary Table 2). In addition, the incidence of 
T2DM between the training and validation sets were also simi-
lar (Supplementary Table 3).

Hazard ratio for new onset T2DM in the Cox model
The Cox longitudinal summary model was used to estimate 
the hazard ratio (HR) and 95% confidence interval (CI) of 
clinical variables affecting new onset T2DM among subjects in 
the training set (Table 2). Various variables that significantly 
increased the HR for T2DM were identified. In particular, the 
HR of family history of DM (HR, 1.523; 95% CI, 1.462 to 
1.586), age (HR, 1.369; 95% CI, 1.348 to 1.391), smoking (HR, 
1.355; 95% CI, 1.308 to 1.405), personal history of heart dis-
ease (HR, 1.343; 95% CI, 1.254 to 1.439), and proteinuria (HR, 
1.217; 95% CI, 1.090 to 1.359) were prominent among the vari-
ables. Conversely, the HR was significantly lower for male indi-
viduals (HR, 0.809; 95% CI, 0.773 to 0.846), alcohol drinkers 
(HR, 0.844; 95% CI, 0.816 to 0.873), and those who exercised 
(HR, 0.876; 95% CI, 0.852 to 0.901).

Clinical variables frequently observed in DL-based models
While constructing the DL-based model, the most frequently 
observed clinical variables in subjects with new T2DM were 
listed using the LRP algorithm (Table 3). Most of the variables 
were found to be similar to the risk factors of T2DM identified 
in the conventional model. However, the family or personal 

history related variables were not included in the 10 most fre-
quently listed variables in the two methods.

Comparison of prediction models
The prediction performance of the Cox and DL-based predic-
tion models was compared. The results demonstrated the per-
formance of the DL-based model to be superior to that of the 
Cox model across all observation periods (Fig. 1). 

The discriminative performances measured by AUC for 5 
years were 0.842 (95% CI, 0.832 to 0.852) and 0.877 (95% CI, 
0.869 to 0.885) in the Cox and DL models, respectively. In ad-
dition, the discriminative performances measured by AUC for 
10 years were 0.807 (95% CI, 0.801 to 0.813) and 0.827 (95% 
CI, 0.821 to 0.833) in the Cox and DL models, respectively. 
Among the two predictive models, the DL-based model showed 
higher sensitivity for 5 years at 81.6% (95% CI, 79.8 to 83.4), 
and specificity, at 76.5% (95% CI, 76.2 to 76.8). This model also 
demonstrated higher sensitivity for 10 years, at 75.1% (95% CI, 
73.9 to 76.2) and specificity, at 74.0% (95% CI, 73.7 to 74.4). 
The detailed analysis results of these two models have been 
summarized separately (Supplementary Table 4). The calibra-
tion results of both the models have also been summarized 
separately (Supplementary Fig. 2).

DISCUSSION

Effective screening of high-risk subjects in the population, and 
evidence-based interventions will help in improving public 
health, and will reduce the burden of T2DM on the national 
health care system [3,4]. Establishing public health system 
based interventions in countries or regions known to be at high 
risk of T2DM, including Korea, are expected to provide con-
siderable benefits to the population. It is essential to develop an 
accurate model for predicting T2DM for achieving these goals.

However, many of the previous studies were not based on 
subjects that were representative of the general population, and 
their accuracy using conventional methodology was not satis-
factory. In addition, since various factors influence the occur-
rence and exacerbation of T2DM, predictive models con-
structed using few variables have low power, while models in-
cluding an excess of variables are complex and cumbersome, 
and are unsuitable for use in the clinic [41]. Most large studies 
have included individuals with specific ethnic or national 
backgrounds, and their findings are not generalizable to other 
populations [42]. Therefore, the existing DM prediction model 
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Table 2. Hazard ratios for T2DM risk factors in the Cox longitudinal summary model of the training set

Variable HR 95% CI P value

Age, /10 yr 1.369 1.348–1.391 <0.0001

Male sex 0.809 0.773–0.846 <0.0001

BMI, kg/m2 Mean 1.105 1.100–1.110 <0.0001

SD 0.986 0.973–0.999 0.041

SBP, mm Hg Mean 1.007 1.006–1.009 <0.0001

SD 1.002 1.000–1.004 0.0342

DBP, mm Hg Mean 1.001 0.999–1.004 0.3908

SD 1.001 0.999–1.004 0.3334

FBG, mg/dL Mean 1.059 1.058–1.060 <0.0001

SD 0.970 0.969–0.970 <0.0001

TC, mg/dL Mean 1.003 1.003–1.003 <0.0001

SD 1.003 1.002–1.004 <0.0001

Hemoglobin, g/dL Mean 1.082 1.066–1.098 <0.0001

SD 1.102 1.075–1.131 <0.0001

AST, IU/L Mean 0.991 0.989–0.993 <0.0001

SD 1.006 1.004–1.008 <0.0001

ALT, IU/L Mean 1.019 1.018–1.020 <0.0001

SD 0.989 0.987–0.990 <0.0001

GGT, IU/L Mean 1.002 1.002–1.002 <0.0001

SD 1.000 1.000–1.000 0.9787

Proteinuria Yesa 1.217 1.090–1.359 0.0005

SD 1.230 1.071–1.413 0.0035

Smoking Yesa 1.355 1.308–1.405 <0.0001

SD 0.938 0.885–0.994 0.0306

Alcohol Yesa 0.844 0.816–0.873 <0.0001

SD 1.180 1.118–1.244 <0.0001

Exercise Yesa 0.876 0.852–0.901 <0.0001

SD 1.069 1.022–1.118 0.004

Personal history Hypertension 1.192 1.152–1.233 <0.0001

Heart disease 1.343 1.254–1.439 <0.0001

Stroke 1.156 1.027–1.302 0.0162

Othersb 1.106 1.072–1.141 <0.0001

Family history Hypertension 0.937 0.903–0.973 0.0007

Heart disease 0.876 0.822–0.933 <0.0001

Stroke 0.954 0.912–0.997 0.0382

DM 1.523 1.462–1.586 <0.0001

Othersb 0.937 0.907–0.967 <0.0001

T2DM, type 2 diabetes mellitus; HR, hazard ratio; CI, confidence interval; BMI, body mass index; SD, standard deviation; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; TC, total cholesterol; AST, aspartate aminotransferase; ALT, alanine amino-
transferase; GGT, gamma-glutamyl transferase. 
a‘Yes’ means that the mean of a categorical variable (flexible variables every check-up) consisting of 0 or 1 is ≥0.5, bMalignancy.
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did not provide fully satisfactory accuracy in the Korean popu-
lation [11,12]. One recent study showed that the C-statistics 
for the models for DM risk at 10 years were 0.71 (95% CI, 0.70 
to 0.73) for the men and 0.76 (95% CI, 0.75 to 0.78) for the 
women [12]. The use of artificial intelligence based technolo-
gies for disease prediction has facilitated the introduction of 
DL-based diabetes prediction models in recent years [19-22]. 
These results show that the performance of the DL-based pre-
diction model for T2DM is favorable; however, compared with 
the existing model, the advantages are not very remarkable. A 
study using data from the Korean National Health and Nutri-
tion Examination Survey found that the performance of DL-
based prediction for T2DM was AUC 80.11 [21]. This result is 
an accuracy of about 80%, which is similar to the previous 
model. As a result of a study conducted based on electronic 
medical records of 8,454 subjects, the risk of DM for 5 years 
was similar to that of the traditional model [19].

We had conducted this study to address the limitations of 
previous studies. This study is particularly remarkable in that is 
has been based on a large cohort representative of the popula-
tion of Korea. Various variables such as anthropometric pa-
rameters, personal behavior, past medical history, family histo-
ry, and laboratory tests were utilized in model development. 
Additionally, long-term follow-up data for approximately 10 

years were available for outcome evaluation. Moreover, careful 
statistical analysis facilitated the presentation of time depen-
dent AUCs of the two models, and the clinical variables affect-
ing the occurrence of T2DM in the DL-model. Consequently, 
both models provided reliable results. In particular, the DL-
based model performed better performance than the conven-
tional Cox model. The short-term predictive power of the DL-
based model also demonstrated excellent performance, with 
an AUC as high as 0.877 in 5 years. The most important impli-
cation of this study lies in the development of a highly accurate 
DL-based prediction model using a model that is universally 
applicable to Korean adults aged over 40 years. This provides 
the considerable advantage of being able to easily and accu-
rately assess the future yearly risk of developing diabetes in the 
nationwide population. In recent years, there has been a free 
ongoing trial service in Korea that offers predictive tests using 
this model for the future risk of diabetes in health checkup re-
cipients who agree to undergo testing. In the future, if its feasi-
bility is established, the service will be provided free of charge 
to all Koreans.

The Korean Diabetes Prevention Study is currently being 
conducted in Korea to evaluate the clinical utility of preventive 
interventions for high-risk patients with diabetes [43]. If the 
results are conducive, and independent evidence for the pre-
vention of diabetes is established based on national screening 
projects, Korea will be able to provide a system for systematic 
screening of high-risk populations and preventive interven-
tions. The provision of diabetes prediction systems to the en-

Table 3. Rank of risk factors in deep learning model

Rank Sum of 
ranksa

Feature 
name

Mean of 
valuesb

Feature 
name

  1 225139 FBG 0.540717434 FBG

  2 390825 Age 0.225780582 Age

  3 415586 Sexc 0.198429918 ALT

  4 452213 ALT 0.183752354 BMI

  5 474756 BMI 0.155880525 GGT

  6 506423 GGT 0.131993265 SBP

  7 528990 SBP 0.11983712 TC

  8 590453 TC 0.099701395 Sex

  9 686835 AST 0.080821141 Alcohol

10 696361 Alcoholc 0.068915813 Exercise

FBG, fasting blood glucose; ALT, alanine aminotransferase; BMI, 
body mass index; GGT, gamma-glutamyl transferase; SBP, systolic 
blood pressure; TC, total cholesterol; AST, aspartate aminotransferase.
aRanking each sample by absolute value of layer-wise relevance prop-
agation (LRP), then ascending order by summing the ranks by vari-
ables in all samples, bCalculate the mean for the absolute value of LRP 
by variable in all samples and sort in descending order, cSex is speci-
fied as male or female, alcohol as yes or no.

Fig. 1. Area under the curve (AUC) by year for the Cox longi-
tudinal summary model (Cox Ls) and deep learning (DL) 
model.
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tire national population based on artificial intelligence, and ef-
forts for the dissemination of evidence-based interventions are 
rarely observed worldwide. Therefore, we believe that it is nec-
essary to introduce the Korean model to global researchers, 
and to discuss the future impact on public health.

This study has certain limitations. First, the accuracy of the 
long-term prediction close to 10 years is lower than that of the 
short-term prediction of 5 years or less. Second, the inaccuracy 
of claims-based research may be debated. Third, since all sub-
jects do not necessarily undergo national health checkups, cer-
tain errors may have been introduced. Most of the currently 
available variables have been included in the model; however, 
the adequacy of the type and numbers of the variables are diffi-
cult to estimate. For instance, the detailed classification of per-
sonal behavior and family history of chronic disease was diffi-
cult; it is possible that the influence of this variable was not ac-
curately calculated. Additionally, the HR was significantly 
higher for the family history of DM in the conventional than 
the DL-based model. This is a notable limitation since no 
mechanisms were available to explain these results based on 
the current DL based model. Therefore, the results of this study 
did not completely shift the existing paradigm. We hope that 
these limitations may be addressed by determining outcomes 
for longer terms, more detailed clinical phenotyping, applica-
tion of better analytical methodologies and reflecting the vari-
ables that have recently been updated. In particular, we specu-
late that the addition of individual genomic, microbiomic, and 
pertinent biomarker data will maximize its predictive power.

Despite these limitations, we successfully constructed a DL-
based prediction model based on a representative nationwide 
cohort, which may easily and accurately predict the risk of 
T2DM in all members of the general population; we also dem-
onstrated its good performance. This prediction model has al-
ready been used among some national health screening exam-
inees in Korea. To the best of our knowledge, this is the first 
global instance of implementation of a DL-based diabetes pre-
diction system for the entire national population. It is possible 
that the considerable burden of diabetes may be eventually re-
duced in Korea if evidence-based personalized preventive in-
terventions are realized in future.
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Appendix 1. Model building and training in the recurrent neural network

Recurrent neural network long short-term memory (RNN-LSTM) was developed to solve long-range dependency and vanishing 
gradient problems seen in RNN, which degraded performance as event length increased. Our proposed LSTM model is designed 
with the following structure. Our proposed LSTM model is designed with the following structure. For the optimization of the al-
gorithm, RMSProp [31] was used to update parameters through back-propagation. The learning sample set S is consisted of or-
dered pairs (x, y) with inputs and correct answers. Input x is an element of input set X, whereas correct answer y is an element of 
correct answers set Y. Here, x is consisted of serial data in the form of an individual’s information. The T in input x=(x1,…, xt, …, 
xT) represents the length of a sample (i.e., the number of events) and varies individually. A health examination record is consisted 
of an event; and, all events x1, …, xT for a person are in chronological order. xt represents an event (examination record) at a spe-
cific time and is used as a vector with features. The correct answer y=(y1, …,yK) has a Boolean value indicating whether or not 
type 2 diabetes mellitus (T2DM) occurred in the past. Hyper-parameters at a learning rate of 0.01 were configured, a dropout 
probability of 50%, and a mini-batch of 64. The correct answer is one-hot encoded to be used as cross entropy in a loss function. 
K—the number of classes—is set as 2. Assuming the output of prediction model is ŷ=(ŷ1, …, ŷK ), cross entropy as shown in 
Equation 1 is used for our loss function. 

 (Equation 1)

The output sequence for LSTM was o=(o1, … ot, …, oT) where T was the event length being the same as the event length of x. 
The prediction result of an input sample provided the probability of T2DM in the near future taken the occurrence of past event 
into account. 

Only the last output oT among o1, … ot, …, oT was used and reflected to an output z as shown in Equation 2. Here, W∈RK×H  was 
the parameter to be optimized and H was the number of hidden nodes in the last hidden layer. To calculate the probability of ŷi 
from z, the softmax function was used as shown in Equation 3. 

 (Equation 2)

 (Equation 3)

LSTM had a memory cell with input, forget and output gates. Each LSTM unit uses the equations in Equation 4 which are com-
monly used in LSTM. 

 (Equation 4)

σ was the logistic sigmoid function and i, f, o, and c were respectively the input gate, forget gate, output gate, and cell. The sub-
scripts in weight matrix above have an obvious meaning. For example, Whi is the hidden-input gate matrix while Wxo being the 
input-output gate matrix. The bs are bias terms which are added for i, f, o, and c equations. Let N be the number of LSTM blocks 
and M the number of inputs, Wi, Wf, Wc, Wo∈RN×M.
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Supplementary Table 1. Variables used in each prediction model

Model Variable

Cox Ls Age at baseline, sex

BMI, SBP, DBP, FBG, TC, hemoglobin, AST, ALT, GGT, proteinuria

Smoking, alcohol, exercise

Personal history of hypertension, heart disease, stroke, and others (including malignancy), family history of hypertension, 
heart disease, stroke, DM, and others (including malignancy)

DL Date of each health examination

Age at baseline, sex

BMI, SBP, DBP, FBG, TC, hemoglobin, AST, ALT, GGT, proteinuria 

Smoking, alcohol, exercise

Personal history of hypertension, heart disease, stroke, and others (including malignancy), family history of hypertension, 
heart disease, stroke, DM, and others (including malignancy)

Cox Ls, Cox longitudinal summary; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glu-
cose; TC, total cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase; DM, diabetes 
mellitus; DL, deep learning.
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Supplementary Table 2. Baseline characteristics of the validation set

Variable All (n=67,061)
Incident T2DM

Yes (n=5,736) No (n=61,325)

Age, yr 51.8±9.1 54.5±9.2 51.5±9.1

Male sex 37,637 (56.12) 3,558 (62.03) 34,079 (55.57)

BMI, kg/m2 23.9±2.9 25.1±3.1 23.7±2.9

SBP, mm Hg 125.9±17.5 131.8±18.4 125.3±17.3

DBP, mm Hg 79.2±11.5 82.5±11.9 78.9±11.4

FBG, mg/dL 90.9±12.6 98.0±13.9 90.2±12.2

TC, mg/dL 199.6±37.1 208.7±40.1 198.8±36.7

Hemoglobin, g/dL 14.0±1.5 14.2±1.5 13.9±1.5

AST, IU/L 26.6±17.2 30.7±20.7 26.2±16.7

ALT, IU/L 25.5±20.3 32.8±25.5 24.9±19.6

GGT, IU/L 35.9±49.1 53.1±74.8 34.2±45.6

Proteinuria 947 (1.41) 136 (2.37) 811 (1.32)

Smoking 21,441 (31.97) 2,186 (38.11) 19,255 (31.40)

Alcohol 29,731 (44.33) 2,641 (46.04) 27,090 (44.17)

Exercise 28,685 (42.77) 2,363 (41.20) 26,322 (42.92)

Personal history 

   Hypertension 4,238 (6.32) 694 (12.10) 3,544 (5.78)

   Heart disease 663 (0.99) 97 (1.69) 566 (0.92)

   Stroke 204 (0.30) 31 (0.54) 173 (0.28)

   Othersa 6,962 (10.38) 660 (11.51) 6,302 (10.28)

Family history 

   Hypertension 5,474 (8.16) 490 (8.54) 4,984 (8.13)

   Heart disease 2,015 (3.00) 158 (2.75) 1,857 (3.03)

   Stroke 3,714 (5.54) 315 (5.49) 3,399 (5.54)

   DM 3,720 (5.55) 451 (7.86) 3,269 (5.33)

   Othersa 9,859 (14.70) 741 (12.92) 9,118 (14.87)

Follow-up, yr 10.4±1.7 6.7±2.6 10.8±1.1

Check-up, n 2.9±1.0 2.8±1.0 2.9±1.0

Values are presented as mean±standard deviation or number (%).
T2DM, type 2 diabetes mellitus; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; 
TC, total cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase; DM, diabetes mellitus.
aMalignancy.
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Supplementary Table 3. Incidence of type 2 diabetes mellitus of the subjects

Variable
Year

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Training set

   Event rate 0.04 0.22 0.51 0.76 0.87 0.94 1.06 1.07 1.15 1.07 1.05

   Incidence rate, /100,000 PY 40.64 222.60 514.24 771.08 895.56 981.79 1,117.47 1,151.61 1,251.85 1,185.50 1,183.96

Validation set

   Event rate 0.03 0.20 0.56 0.77 0.87 0.96 0.95 1.05 1.10 1.04 1.01

   Incidence rate, /100,000 PY 31.32 204.66 560.16 780.61 895.77 1,005.71 1,009.28 1,132.40 1,202.02 1,158.59 1,138.75

PY, person-year.
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Supplementary Table 4. Statistics of the Cox Ls and DL model on diabetes prediction by year

AUC 
(time dependent) Sensitivity Specificity Accuracy PPV NPV

Cox Ls

1 yr 0.873 (0.787–0.959) 1.000 (1.000–1.000) 0.788 (0.785–0.791) 0.788 (0.788–0.788) 0.000 (0.000–0.001) 1.000 (1.000–1.000)

2 yr 0.861 (0.828–0.894) 0.773 (0.704–0.842) 0.843 (0.840–0.846) 0.843 (0.843–0.843) 0.010 (0.008–0.012) 0.999 (0.999–1.000)

3 yr 0.862 (0.846–0.878) 0.799 (0.767–0.832) 0.787 (0.784–0.790) 0.787 (0.787–0.787) 0.032 (0.029–0.035) 0.998 (0.997–0.998)

4 yr 0.845 (0.833–0.857) 0.757 (0.732–0.783) 0.791 (0.788–0.794) 0.791 (0.791–0.791) 0.057 (0.053–0.061) 0.995 (0.994–0.996)

5 yr 0.842 (0.832–0.852) 0.778 (0.758–0.798) 0.759 (0.755–0.762) 0.759 (0.759–0.759) 0.077 (0.073–0.081) 0.992 (0.992–0.993)

6 yr 0.836 (0.828–0.844) 0.761 (0.743–0.778) 0.761 (0.758–0.764) 0.761 (0.761–0.761) 0.102 (0.098–0.107) 0.989 (0.988–0.990)

7 yr 0.830 (0.822–0.837) 0.744 (0.729–0.760) 0.763 (0.760–0.766) 0.762 (0.762–0.762) 0.127 (0.122–0.132) 0.985 (0.984–0.986)

8 yr 0.822 (0.814–0.829) 0.722 (0.708–0.737) 0.767 (0.764–0.771) 0.765 (0.765–0.765) 0.153 (0.148–0.158) 0.979 (0.978–0.981)

9 yr 0.814 (0.808–0.821) 0.755 (0.742–0.767) 0.718 (0.715–0.722) 0.720 (0.720–0.720) 0.159 (0.154–0.164) 0.976 (0.975–0.978)

10 yr 0.807 (0.801–0.813) 0.739 (0.727–0.751) 0.722 (0.719–0.726) 0.723 (0.723–0.723) 0.180 (0.175–0.186) 0.971 (0.969–0.973)

DL

1 yr 0.999 (0.999–1.000) 1.000 (1.000–1.000) 0.998 (0.997–0.998) 0.998 (0.997–0.998) 0.026 (0.001–0.051) 1.000 (1.000–1.000)

2 yr 0.971 (0.960–0.983) 0.901 (0.851–0.950) 0.939 (0.937–0.941) 0.939 (0.937–0.941) 0.030 (0.025–0.035) 1.000 (1.000–1.000)

3 yr 0.940 (0.933–0.947) 0.879 (0.853–0.906) 0.843 (0.840–0.846) 0.843 (0.840–0.846) 0.047 (0.043–0.051) 0.999 (0.998–0.999)

4 yr 0.905 (0.897–0.913) 0.815 (0.792–0.838) 0.829 (0.826–0.832) 0.829 (0.826–0.832) 0.074 (0.069–0.078) 0.996 (0.996–0.997)

5 yr 0.877 (0.869–0.885) 0.816 (0.798–0.834) 0.765 (0.762–0.768) 0.766 (0.763–0.770) 0.083 (0.079–0.087) 0.994 (0.993–0.994)

6 yr 0.866 (0.858–0.873) 0.768 (0.751–0.785) 0.798 (0.794–0.801) 0.797 (0.793–0.800) 0.120 (0.115–0.125) 0.990 (0.989–0.991)

7 yr 0.854 (0.848–0.861) 0.779 (0.764–0.794) 0.761 (0.758–0.764) 0.762 (0.758–0.765) 0.132 (0.127–0.136) 0.987 (0.986–0.988)

8 yr 0.844 (0.837–0.850) 0.772 (0.758–0.785) 0.752 (0.749–0.756) 0.753 (0.750–0.757) 0.153 (0.148–0.159) 0.983 (0.982–0.984)

9 yr 0.834 (0.828–0.840) 0.741 (0.728–0.754) 0.763 (0.759–0.766) 0.761 (0.758–0.764) 0.181 (0.175–0.187) 0.977 (0.975–0.978)

10 yr 0.827 (0.821–0.833) 0.751 (0.739–0.762) 0.740 (0.737–0.744) 0.741 (0.738–0.744) 0.193 (0.187–0.198) 0.973 (0.971–0.974)

Cox Ls, Cox longitudinal summary model; DL, deep learning; AUC, area under the curve; PPV, positive predictive value; NPV, negative predic-
tive value.
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NHIS-HEALS (n=514,866)
records identified through database screening

Excluded 179,564 subjects
 97,415  Screening only once during 2002–2006
 82,073  Previously diagnosed with diabetes or deaths
 76  Without screening record at baseline

Subjects without DM at baseline (n=335,302)

Subjects for model development
(n=268,241)

Subjects for confirmation of
performance (n=67,061)

Supplementary Fig. 1. Study progression. NHIS-HEALS, National Health Insurance Service-Health Screening; DM, diabetes 
mellitus.
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Supplementary Fig. 2. Calibration of two predictive models. Calibration and Hosmer-Lemeshow test for the Cox longitudinal 
summary model in (A) 5 years and (B) 10 years. Calibration and Hosmer-Lemeshow test for the deep learning model in (C) 5 
years and (D) 10 years.
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