Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
3 "Epigenomics"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Reviews
Islet Studies and Transplantation
Regulation of Pancreatic β-Cell Mass by Gene-Environment Interaction
Shun-ichiro Asahara, Hiroyuki Inoue, Yoshiaki Kido
Diabetes Metab J. 2022;46(1):38-48.   Published online January 27, 2022
DOI: https://doi.org/10.4093/dmj.2021.0045
  • 4,554 View
  • 197 Download
  • 5 Web of Science
  • 5 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFPubReader   ePub   
The main pathogenic mechanism of diabetes consists of an increase in insulin resistance and a decrease in insulin secretion from pancreatic β-cells. The number of diabetic patients has been increasing dramatically worldwide, especially in Asian people whose capacity for insulin secretion is inherently lower than that of other ethnic populations. Causally, changes of environmental factors in addition to intrinsic genetic factors have been considered to have an influence on the increased prevalence of diabetes. Particular focus has been placed on “gene-environment interactions” in the development of a reduced pancreatic β-cell mass, as well as type 1 and type 2 diabetes mellitus. Changes in the intrauterine environment, such as intrauterine growth restriction, contribute to alterations of gene expression in pancreatic β-cells, ultimately resulting in the development of pancreatic β-cell failure and diabetes. As a molecular mechanism underlying the effect of the intrauterine environment, epigenetic modifications have been widely investigated. The association of diabetes susceptibility genes or dietary habits with gene-environment interactions has been reported. In this review, we provide an overview of the role of gene-environment interactions in pancreatic β-cell failure as revealed by previous reports and data from experiments.

Citations

Citations to this article as recorded by  
  • Increased risk of incident diabetes after therapy with immune checkpoint inhibitor compared with conventional chemotherapy: A longitudinal trajectory analysis using a tertiary care hospital database
    Minyoung Lee, Kyeongseob Jeong, Yu Rang Park, Yumie Rhee
    Metabolism.2023; 138: 155311.     CrossRef
  • The ameliorating effects of mesenchymal stem cells compared to α‐tocopherol on apoptosis and autophagy in streptozotocin‐induced diabetic rats: Implication of PI3K/Akt signaling pathway and entero‐insular axis
    Heba A. Mubarak, Manal M. Kamal, Yossra Mahmoud, Fatma S. Abd‐Elsamea, Eman Abdelbary, Marwa G. Gamea, Reham I. El‐Mahdy
    Journal of Cellular Biochemistry.2023; 124(11): 1705.     CrossRef
  • Leptin Rs7799039 polymorphism is associated with type 2 diabetes mellitus Egyptian patients
    Amal Ahmed Mohamed, Dina M. Abo-Elmatty, Alaa S. Wahba, Omnia Ezzat Esmail, Hadeer Saied Mahmoud Salim, Wafaa Salah Mohammed Hegab, Mona Mostafa Farid Ghanem, Nadia Youssef Riad, Doaa Ghaith, Lamiaa I Daker, Shorouk Issa, Noha Hassan Radwan, Eman Sultan,
    Archives of Physiology and Biochemistry.2023; : 1.     CrossRef
  • Association of Polygenic Variants with Type 2 Diabetes Risk and Their Interaction with Lifestyles in Asians
    Haeng Jeon Hur, Hye Jeong Yang, Min Jung Kim, Kyun-Hee Lee, Myung-Sunny Kim, Sunmin Park
    Nutrients.2022; 14(15): 3222.     CrossRef
  • Chemical Compounds and Ambient Factors Affecting Pancreatic Alpha-Cells Mass and Function: What Evidence?
    Gaia Chiara Mannino, Elettra Mancuso, Stefano Sbrignadello, Micaela Morettini, Francesco Andreozzi, Andrea Tura
    International Journal of Environmental Research and Public Health.2022; 19(24): 16489.     CrossRef
Complications
Treatment of Diabetic Kidney Disease: Current and Future
Tomotaka Yamazaki, Imari Mimura, Tetsuhiro Tanaka, Masaomi Nangaku
Diabetes Metab J. 2021;45(1):11-26.   Published online January 22, 2021
DOI: https://doi.org/10.4093/dmj.2020.0217
  • 19,383 View
  • 1,333 Download
  • 92 Web of Science
  • 92 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFPubReader   ePub   
Diabetic kidney disease (DKD) is the major cause of end-stage kidney disease. However, only renin-angiotensin system inhibitor with multidisciplinary treatments is effective for DKD. In 2019, sodium-glucose cotransporter 2 (SGLT2) inhibitor showed efficacy against DKD in Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial, adding a new treatment option. However, the progression of DKD has not been completely controlled. The patients with transient exposure to hyperglycemia develop diabetic complications, including DKD, even after normalization of their blood glucose. Temporary hyperglycemia causes advanced glycation end product (AGE) accumulations and epigenetic changes as metabolic memory. The drugs that improve metabolic memory are awaited, and AGE inhibitors and histone modification inhibitors are the focus of clinical and basic research. In addition, incretin-related drugs showed a renoprotective ability in many clinical trials, and these trials with renal outcome as their primary endpoint are currently ongoing. Hypoxia-inducible factor prolyl hydroxylase inhibitors recently approved for renal anemia may be renoprotective since they improve tubulointerstitial hypoxia. Furthermore, NF-E2–related factor 2 activators improved the glomerular filtration rate of DKD patients in Bardoxolone Methyl Treatment: Renal Function in chronic kidney disease/Type 2 Diabetes (BEAM) trial and Phase II Study of Bardoxolone Methyl in Patients with Chronic Kidney Disease and Type 2 Diabetes (TSUBAKI) trial. Thus, following SGLT2 inhibitor, numerous novel drugs could be utilized in treating DKD. Future studies are expected to provide new insights.

Citations

Citations to this article as recorded by  
  • Clinical value of serum MMP-3 in chronic kidney disease
    Yulin Fu, Cheng Song, Yuan Qin, Tianyu Zheng, Xiumei Zhou, Xueqin Zhao, Jian Zou, Biao Huang
    Clinica Chimica Acta.2024; 553: 117725.     CrossRef
  • β2-Adrenergic receptor agonists as a treatment for diabetic kidney disease
    Ehtesham Arif, Danira Medunjanin, Ashish Solanki, Xiaofeng Zuo, Yanhui Su, Yujing Dang, Brennan Winkler, Kasey Lerner, Ahmed I. Kamal, Oleg Palygin, Marc-Andre Cornier, Bethany J. Wolf, Kelly J. Hunt, Joshua H. Lipschutz
    American Journal of Physiology-Renal Physiology.2024; 326(1): F20.     CrossRef
  • β2-Adrenergic receptor agonists: a new treatment for diabetic kidney disease?
    Zhiwen Liu, Zheng Dong
    American Journal of Physiology-Renal Physiology.2024; 326(1): F1.     CrossRef
  • Urinary exosomal microRNA-145-5p and microRNA-27a-3p act as noninvasive diagnostic biomarkers for diabetic kidney disease
    Lu-Lu Han, Sheng-Hai Wang, Ming-Yan Yao, Hong Zhou
    World Journal of Diabetes.2024; 15(1): 92.     CrossRef
  • Placenta-derived mesenchymal stem cells protect against diabetic kidney disease by upregulating autophagy-mediated SIRT1/FOXO1 pathway
    Honghong Liu, Jiao Wang, Guanru Yue, Jixiong Xu
    Renal Failure.2024;[Epub]     CrossRef
  • Association of serum Nrf2 protein levels with disease activity and renal impairment in lupus nephritis
    Jicui Li, Qiaoyan Guo, Xianping Wei, Yuexin Zhu, Manyu Luo, Ping Luo
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Effects of Qidan Tangshen Granule on diabetic kidney disease in patients with type 2 diabetes
    Hua Yang, Shisi Xia, Yilei Cong, Xinyu Yang, Jie Min, Tengfei Wu
    Diabetes Research and Clinical Practice.2024; 209: 111128.     CrossRef
  • Comparison of conventional mathematical model and machine learning model based on recent advances in mathematical models for predicting diabetic kidney disease
    Yingda Sheng, Caimei Zhang, Jing Huang, Dan Wang, Qian Xiao, Haocheng Zhang, Xiaoqin Ha
    DIGITAL HEALTH.2024;[Epub]     CrossRef
  • Network Pharmacology, Molecular Docking, and Experimental Verification to Reveal the Mitophagy-Associated Mechanism of Tangshen Formula in the Treatment of Diabetic Nephropathy
    Yinfeng Chen, Xiaying Wang, Jie Min, Jie Zheng, Xuanli Tang, Xiaoling Zhu, Dongrong Yu, De Jin
    Diabetes, Metabolic Syndrome and Obesity.2024; Volume 17: 739.     CrossRef
  • Senolytic combination of dasatinib and quercetin protects against diabetic kidney disease by activating autophagy to alleviate podocyte dedifferentiation via the Notch pathway
    Xinwang Zhu, Congxiao Zhang, Linlin Liu, Li Xu, Li Yao
    International Journal of Molecular Medicine.2024;[Epub]     CrossRef
  • Decreased risk of renal cell carcinoma in patients with type 2 diabetes treated with sodium glucose cotransporter‐2 inhibitors
    Chun‐Huei Chiu, Wei‐Yao Wang, Hung‐Yi Chen, Pei‐Lun Liao, Gwo‐Ping Jong, Tsung‐Yuan Yang
    Cancer Science.2024;[Epub]     CrossRef
  • System Biology Approaches for Systemic Diseases: Emphasis on Type II Diabetes Mellitus and Allied Metabolism
    Mohan Das, Moumita Chakraborty, Promi Das, Sayantan Santra, Abhishek Mukherjee, Sarobi Das, Krisztian Banyai, Souvik Roy, Lopamudra Choudhury, Rudrak Gupta, Tama Dey, Dibya Das, Anirbandeep Bose, Balasubramanian Ganesh, Rintu Banerjee
    Biocatalysis and Agricultural Biotechnology.2024; : 103176.     CrossRef
  • Beneficial effects of ginsenosides on diabetic nephropathy: A systematical review and meta-analysis of preclinical evidence
    Xiao-Mei Chen, Gui-Xuan Lin, Xue Wang, Hong-Yan Ma, Ru-Shang Wang, Shu-Mei Wang, Dan Tang
    Journal of Ethnopharmacology.2023; 302: 115860.     CrossRef
  • Waist circumference and end‐stage renal disease based on glycaemic status: National Health Insurance Service data 2009–2018
    Yun Kyung Cho, Ji Hye Huh, Shinje Moon, Yoon Jung Kim, Yang‐Hyun Kim, Kyung‐do Han, Jun Goo Kang, Seong Jin Lee, Sung‐Hee Ihm
    Journal of Cachexia, Sarcopenia and Muscle.2023; 14(1): 585.     CrossRef
  • A Narrative Review of New Treatment Options for Diabetic Nephropathy
    Aadhira Pillai, Darshna Fulmali
    Cureus.2023;[Epub]     CrossRef
  • Shenkang recipe alleviates renal aging in diabetic kidney disease by interfering with the lysine-specific demethylase KDM6B to modulate the PPAR-γ signaling pathway
    Anna Zuo, Jiarun Xie, Junqiao Shao, Shuyu Li, Haoyu Lin, Shaoting Wang, Wei Sun, Jinjin Xia, Weiqiang Jiang, Jia Sun, Ming Wang
    Pharmacological Research - Modern Chinese Medicine.2023; 6: 100216.     CrossRef
  • miR-223-3p mediates the diabetic kidney disease progression by targeting IL6ST/STAT3 pathway
    Ping Tang, Yushan Xu, Jingrong Zhang, Juanli Nan, Ruxian Zhong, Jingmei Luo, Dazhi Xu, Shaoqing Shi, Lihua Zhang
    Biochemical and Biophysical Research Communications.2023; 648: 50.     CrossRef
  • miR‐124‐3p improves mitochondrial function of renal tubular epithelial cells in db/db mice
    Luqun Liang, Chunxin Wo, Yao Yuan, Hongjuan Cao, Wanlin Tan, Xingcheng Zhou, Dan Wang, Rongyu Chen, Mingjun Shi, Fan Zhang, Ying Xiao, Lingling Liu, Yuxia Zhou, Tian Zhang, Yuanyuan Wang, Bing Guo
    The FASEB Journal.2023;[Epub]     CrossRef
  • Hypoxia-Inducible Factor-Prolyl-Hydroxylase and Sodium-Glucose Cotransporter 2 Inhibitors for Low-Risk Myelodysplastic Syndrome-Related Anemia in Patients with Chronic Kidney Disease: A Report of Three Cases
    Satoshi Yamasaki, Takahiko Horiuchi
    Hematology Reports.2023; 15(1): 180.     CrossRef
  • Diagnostic significance of hsa_circ_0000146 and hsa_circ_0000072 biomarkers for Diabetic Kidney Disease in patients with type 2 diabetes mellitus
    Amul Badr, Omayma Elkholy, Mona Said, Sally Fahim, Mohamed El-Khatib, Dina Sabry, Radwa Gaber
    Journal of Medical Biochemistry.2023; 42(2): 239.     CrossRef
  • The emerging insight into E3 ligases as the potential therapeutic target for diabetic kidney disease
    Vivek Akhouri, Syamantak Majumder, Anil Bhanudas Gaikwad
    Life Sciences.2023; 321: 121643.     CrossRef
  • Klotho’s impact on diabetic nephropathy and its emerging connection to diabetic retinopathy
    Anqi Tang, Yu Zhang, Ling Wu, Yong Lin, Lizeyu Lv, Liangbin Zhao, Bojun Xu, Youqun Huang, Mingquan Li
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Differences and Clinical Significance of Serum 25-Hydroxyvitamin D3 and Vasohibin-1 (VASH-1) Levels in Patients with Diabetic Nephropathy and Different Renal Injuries
    Hui Liu, Dongyan Wang, Jingnan Tang, Linlin Yu, Shanshan Su
    Diabetes, Metabolic Syndrome and Obesity.2023; Volume 16: 1085.     CrossRef
  • Medial Arterial Calcification and the Risk of Amputation of Diabetic Foot Ulcer in Patients With Diabetic Kidney Disease
    Joon Myeong So, Ji Ho Park, Jin Gyeong Kim, Il Rae Park, Eun Yeong Ha, Seung Min Chung, Jun Sung Moon, Chul Hyun Park, Woo-Sung Yun, Tae-Gon Kim, Woong Kim, Ji Sung Yoon, Kyu Chang Won, Hyoung Woo Lee
    Journal of Korean Medical Science.2023;[Epub]     CrossRef
  • Heparanase-2 protein and peptides have a protective effect on experimental glomerulonephritis and diabetic nephropathy
    Baranca Buijsers, Marjolein Garsen, Mark de Graaf, Marinka Bakker-van Bebber, Chunming Guo, Xue Li, Johan van der Vlag
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • Influence of non-alcoholic steatohepatitis on the renal functional status in patients with type 2 diabetes and diabetic kidney disease
    Z.Ya. Кotsiubiichuk, O.S. Khukhlina, А.А. Аntoniv, O.Ye. Mandryk
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine).2023; 19(2): 100.     CrossRef
  • Roles of extracellular vesicles in ageing-related chronic kidney disease: Demon or angel
    Siqi Yin, Zixuan Zhou, Peiwen Fu, Chaoying Jin, Peipei Wu, Cheng Ji, Yunjie Shan, Linru Shi, Min Xu, Hui Qian
    Pharmacological Research.2023; 193: 106795.     CrossRef
  • Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer
    Giovanni Tossetta, Sonia Fantone, Daniela Marzioni, Roberta Mazzucchelli
    Cancers.2023; 15(11): 3037.     CrossRef
  • Risk factors for heart, cerebrovascular, and kidney diseases: evaluation of potential side effects of medications to control hypertension, hyperglycemia, and hypercholesterolemia
    Kazumitsu Nawata
    Frontiers in Cardiovascular Medicine.2023;[Epub]     CrossRef
  • Rationale and design of a prospective, clinical study of kidney biopsies in people with type 2 diabetes and severely increased albuminuria (the PRIMETIME 2 study)
    Marie Møller, Rikke Borg, Iain Bressendorff, Lisbeth N Fink, Eva Gravesen, Karina Haar Jensen, Torben Hansen, Dorrit Krustrup, Frederik Persson, Peter Rossing, Frederikke E Sembach, Anne C B Thuesen, Ditte Hansen
    BMJ Open.2023; 13(6): e072216.     CrossRef
  • Oral Chinese patent medicines for diabetic kidney disease: An overview of systematic reviews
    Xue Xue, Ke-ying Li, Shang-zhi Liu, Jia-xuan Li, Xin-yan Jin, Xue-han Liu, La-mei Lin, Xin-rong Zou, Chun-li Lu, Fang-fang Zhao, Jian-ping Liu, Xiao-qin Wang
    European Journal of Integrative Medicine.2023; 61: 102269.     CrossRef
  • Recent Advances in Proteinuric Kidney Disease/Nephrotic Syndrome: Lessons from Knockout/Transgenic Mouse Models
    Ryosuke Saiki, Kan Katayama, Kaoru Dohi
    Biomedicines.2023; 11(7): 1803.     CrossRef
  • Epigenetic regulation of angiogenesis and ischemic response by long noncoding RNA LEENE in diabetes
    Imari Mimura, Masaomi Nangaku
    Kidney International.2023; 104(6): 1048.     CrossRef
  • Advances in the pharmacological study of Chinese herbal medicine to alleviate diabetic nephropathy by improving mitochondrial oxidative stress
    Ming Chen, Yao Chen, Wenhui Zhu, Xiaoming Yan, Jing Xiao, Peiqing Zhang, Peng Liu, Ping Li
    Biomedicine & Pharmacotherapy.2023; 165: 115088.     CrossRef
  • A Systematic Review and Meta-Analysis on the Efficacy and Safety of Finerenone Therapy in Patients with Cardiovascular and Chronic Kidney Diseases in Type 2 Diabetes Mellitus
    FNU Jyotsna, Kamran Mahfooz, Tirath Patel, FNU Parshant, Fnu Simran, Fnu Harsha, Fnu Neha, Dev Jyotishna, Dipesh Mishra, Sirjana Subedi, Mahima Khatri, Satesh Kumar, Giustino Varrassi
    Cureus.2023;[Epub]     CrossRef
  • Molecular implications of glycosaminoglycans in diabetes pharmacotherapy
    Tanya Waseem, Madiha Ahmed, Tausif Ahmed Rajput, Mustafeez Mujtaba Babar
    International Journal of Biological Macromolecules.2023; 247: 125821.     CrossRef
  • SGLT2 Inhibitors in the Treatment of Diabetic Kidney Disease: More than Just Glucose Regulation
    Jasna Klen, Vita Dolžan
    Pharmaceutics.2023; 15(7): 1995.     CrossRef
  • CUL3 induces mitochondrial dysfunction via MRPL12 ubiquitination in renal tubular epithelial cells
    Xingzhao Ji, Xiaoli Yang, Xia Gu, Lingju Chu, Shengnan Sun, Jian Sun, Peng Song, Qian Mu, Ying Wang, Xiaoming Sun, Dun Su, Tong Su, Shaoshuai Hou, Yao Lu, Chen Ma, Mingqiang Liu, Tianyi Zhang, Weiying Zhang, Yi Liu, Qiang Wan
    The FEBS Journal.2023; 290(22): 5340.     CrossRef
  • HP1 induces ferroptosis of renal tubular epithelial cells through NRF2 pathway in diabetic nephropathy
    Chuanqiang Zhou, Min Wu, Gaolun Liu, Li Zhou
    Open Life Sciences.2023;[Epub]     CrossRef
  • A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases
    Ilker Ates, Ayşe Didem Yılmaz, Brigitta Buttari, Marzia Arese, Luciano Saso, Sibel Suzen
    Brain Sciences.2023; 13(11): 1532.     CrossRef
  • Astragalus membranaceus and Salvia miltiorrhiza ameliorate diabetic kidney disease via the “gut-kidney axis”
    Zhen Shen, Tao Cui, Yao Liu, Shuai Wu, Cong Han, Jie Li
    Phytomedicine.2023; 121: 155129.     CrossRef
  • The relevance of the non-invasive biomarkers lncRNA GAS5/miR-21 ceRNA regulatory network in the early identification of diabetes and diabetic nephropathy
    He Sun, Tong Chen, Xin Li, Yonghong Zhu, Shuang Zhang, Ping He, Yali Peng, Qiuling Fan
    Diabetology & Metabolic Syndrome.2023;[Epub]     CrossRef
  • Activation of acetyl-CoA synthetase 2 mediates kidney injury in diabetic nephropathy
    Jian Lu, Xue Qi Li, Pei Pei Chen, Jia Xiu Zhang, Liang Liu, Gui Hua Wang, Xiao Qi Liu, Ting Ting Jiang, Meng Ying Wang, Wen Tao Liu, Xiong Zhong Ruan, Kun Ling Ma
    JCI Insight.2023;[Epub]     CrossRef
  • SET7, a lysine-specific methyl transferase: An intriguing epigenetic target to combat diabetic nephropathy
    Samarth Dwivedi, Atharva Chavan, Atish T. Paul
    Drug Discovery Today.2023; 28(10): 103754.     CrossRef
  • Dznep, a histone modification inhibitor, inhibits HIF1α binding to TIMP2 gene and suppresses TIMP2 expression under hypoxia
    Tomotaka Yamazaki, Imari Mimura, Yu Kurata, Tetsuhiro Tanaka, Masaomi Nangaku
    Physiological Reports.2023;[Epub]     CrossRef
  • GLP-1RAs inhibit the activation of the NLRP3 inflammasome signaling pathway to regulate mouse renal podocyte pyroptosis
    Xiang Li, Xiao Jiang, Mei Jiang, Zhi-feng Wang, Tao Zhao, Si-ming Cao, Qiu-Mei Li
    Acta Diabetologica.2023; 61(2): 225.     CrossRef
  • Highly Sensitive, Portable Detection System for Multiplex Chemiluminescence Analysis
    Yannan Yu, Wei Nie, Kaiqin Chu, Xi Wei, Zachary J. Smith
    Analytical Chemistry.2023; 95(39): 14762.     CrossRef
  • From normal population to prediabetes and diabetes: study of influencing factors and prediction models
    Di Gong, Xiaohong Chen, Lin Yang, Yongjian Zhang, Qianqian Zhong, Jing Liu, Chen Yan, Yongjiang Cai, Weihua Yang, Jiantao Wang
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • Diabetes Monitoring through Urine Analysis Using ATR-FTIR Spectroscopy and Machine Learning
    Sajid Farooq, Denise Maria Zezell
    Chemosensors.2023; 11(11): 565.     CrossRef
  • Treatment and practical considerations of diabetic kidney disease
    Yara Bilen, Allaa Almoushref, Kenda Alkwatli, Omar Osman, Ali Mehdi, Hanny Sawaf
    Frontiers in Medicine.2023;[Epub]     CrossRef
  • Application of Metabolomics and Traditional Chinese Medicine for Type 2 Diabetes Mellitus Treatment
    Jing Li, Na Zhu, Yaqiong Wang, Yanlei Bao, Feng Xu, Fengjuan Liu, Xuefeng Zhou
    Diabetes, Metabolic Syndrome and Obesity.2023; Volume 16: 4269.     CrossRef
  • Cardiovascular autonomic neuropathy and incident diabetic kidney disease in patients with type 2 diabetes
    Ji Eun Jun, Min Sun Choi, Jae Hyeon Kim
    Diabetes Research and Clinical Practice.2022; 184: 109181.     CrossRef
  • Lipidomic Analysis Reveals the Protection Mechanism of GLP-1 Analogue Dulaglutide on High-Fat Diet-Induced Chronic Kidney Disease in Mice
    Martin Ho Yin Yeung, Ka Long Leung, Lai Yuen Choi, Jung Sun Yoo, Susan Yung, Pui-Kin So, Chi-Ming Wong
    Frontiers in Pharmacology.2022;[Epub]     CrossRef
  • GLP-1 receptor agonists in diabetic kidney disease: current evidence and future directions
    Ji Hee Yu, So Young Park, Da Young Lee, Nan Hee Kim, Ji A Seo
    Kidney Research and Clinical Practice.2022; 41(2): 136.     CrossRef
  • Evolving Type 2 diabetes management focuses on clinical outcomes
    Caroline Fenton, Connie Kang
    Drugs & Therapy Perspectives.2022; 38(4): 165.     CrossRef
  • Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease
    Chan-Young Jung, Tae-Hyun Yoo
    Diabetes & Metabolism Journal.2022; 46(2): 181.     CrossRef
  • Critical shear stress of red blood cells as a novel integrated biomarker for screening chronic kidney diseases in cases of type 2 diabetes
    Il Rae Park, Jimi Choi, Eun Young Ha, Seung Min Chung, Jun Sung Moon, Sehyun Shin, Sin Gon Kim, Kyu Chang Won
    Clinical Hemorheology and Microcirculation.2022; 81(4): 293.     CrossRef
  • Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells
    Donghee Kim, Ga-Young Nam, Eunhui Seo, Hee-Sook Jun
    Journal of Biomedical Science.2022;[Epub]     CrossRef
  • The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1
    Yuji Oe, Volker Vallon
    Kidney and Dialysis.2022; 2(2): 349.     CrossRef
  • Dapagliflozin for the treatment of chronic kidney disease
    Yu Kurata, Masaomi Nangaku
    Expert Review of Endocrinology & Metabolism.2022; 17(4): 275.     CrossRef
  • Repurposing drugs for highly prevalent diseases: pentoxifylline, an old drug and a new opportunity for diabetic kidney disease
    Javier Donate-Correa, María Dolores Sanchez-Niño, Ainhoa González-Luis, Carla Ferri, Alberto Martín-Olivera, Ernesto Martín-Núñez, Beatriz Fernandez-Fernandez, Víctor G Tagua, Carmen Mora-Fernández, Alberto Ortiz, Juan F Navarro-González
    Clinical Kidney Journal.2022; 15(12): 2200.     CrossRef
  • Cyproheptadine, a SET7/9 inhibitor, reduces hyperglycaemia-induced ER stress alleviating inflammation and fibrosis in renal tubular epithelial cells
    Himanshu Sankrityayan, Ajinath Kale, Vishwadeep Shelke, Anil Bhanudas Gaikwad
    Archives of Physiology and Biochemistry.2022; : 1.     CrossRef
  • Pan-Src kinase inhibitor treatment attenuates diabetic kidney injury via inhibition of Fyn kinase-mediated endoplasmic reticulum stress
    Debra Dorotea, Songling Jiang, Eun Seon Pak, Jung Beom Son, Hwan Geun Choi, Sung-Min Ahn, Hunjoo Ha
    Experimental & Molecular Medicine.2022; 54(8): 1086.     CrossRef
  • Renoprotective Mechanism of Sodium-Glucose Cotransporter 2 Inhibitors: Focusing on Renal Hemodynamics
    Nam Hoon Kim, Nan Hee Kim
    Diabetes & Metabolism Journal.2022; 46(4): 543.     CrossRef
  • Effect of once-weekly dulaglutide on renal function in patients with chronic kidney disease
    Sungmin Kim, Jung Nam An, Young Rim Song, Sung Gyun Kim, Hyung Seok Lee, AJin Cho, Jwa-Kyung Kim, Tomislav Bulum
    PLOS ONE.2022; 17(8): e0273004.     CrossRef
  • Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives
    Daniela Maria Tanase, Evelina Maria Gosav, Madalina Ioana Anton, Mariana Floria, Petronela Nicoleta Seritean Isac, Loredana Liliana Hurjui, Claudia Cristina Tarniceriu, Claudia Florida Costea, Manuela Ciocoiu, Ciprian Rezus
    Biomolecules.2022; 12(9): 1227.     CrossRef
  • Preventive and healing effect of high dosing grape seed flour on CKD patients of various stages and aetiologies
    Wiem Bejaoui, Mohamed Mahmoudi, Kamel Charradi, Monia Abbes-Belhadj, Habib Boukhalfa, Mossadok Ben-Attia, Ferid Limam, Ezzedine Aouani
    Biomarkers.2022; 27(8): 795.     CrossRef
  • Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics
    Miyesaier Abudureyimu, Xuanming Luo, Xiang Wang, James R Sowers, Wenshuo Wang, Junbo Ge, Jun Ren, Yingmei Zhang, Wei-Ping Jia
    Journal of Molecular Cell Biology.2022;[Epub]     CrossRef
  • Recent Advances in the Emerging Therapeutic Strategies for Diabetic Kidney Diseases
    Wei Huang, Yi-Yuan Chen, Zi-Qi Li, Fang-Fang He, Chun Zhang
    International Journal of Molecular Sciences.2022; 23(18): 10882.     CrossRef
  • Serum isthmin-1 levels are positively and independently correlated with albuminuria in patients with type 2 diabetes mellitus
    Chuan Wang, Mingyue Xu, Ruiying Feng, Lei Zhang, Xiaofei Yin, Ruoqi Feng, Kai Liang, Jinbo Liu
    BMJ Open Diabetes Research & Care.2022; 10(5): e002972.     CrossRef
  • hucMSC-sEVs-Derived 14-3-3ζ Serves as a Bridge between YAP and Autophagy in Diabetic Kidney Disease
    Siqi Yin, Wanzhu Liu, Cheng Ji, Yuan Zhu, Yunjie Shan, Zixuan Zhou, Wenya Chen, Leilei Zhang, Zixuan Sun, Wenqin Zhou, Hui Qian, Chaoliang Tang
    Oxidative Medicine and Cellular Longevity.2022; 2022: 1.     CrossRef
  • Adenosine receptors as emerging therapeutic targets for diabetic kidney disease
    Eun Seon Pak, Jin Joo Cha, Dae Ryong Cha, Keizo Kanasaki, Hunjoo Ha
    Kidney Research and Clinical Practice.2022; 41(Suppl 2): S74.     CrossRef
  • REDD1 Ablation Attenuates the Development of Renal Complications in Diabetic Mice
    Siddharth Sunilkumar, Esma I. Yerlikaya, Allyson L. Toro, William P. Miller, Han Chen, Kebin Hu, Scot R. Kimball, Michael D. Dennis
    Diabetes.2022; 71(11): 2412.     CrossRef
  • The Role of Hypoxia-Inducible Factor-1 Alpha in Renal Disease
    Huixia Liu, Yujuan Li, Jing Xiong
    Molecules.2022; 27(21): 7318.     CrossRef
  • Resistant Starch as a Dietary Intervention to Limit the Progression of Diabetic Kidney Disease
    Anna M. Drake, Melinda T. Coughlan, Claus T. Christophersen, Matthew Snelson
    Nutrients.2022; 14(21): 4547.     CrossRef
  • Aggravated renal fibrosis is positively associated with the activation of HMGB1-TLR2/4 signaling in STZ-induced diabetic mice
    Yan Yuan, Yuanxia Liu, Mengyao Sun, Huijing Ye, Yuchen Feng, Zhenzhen Liu, Lingyu Pan, Hongbo Weng
    Open Life Sciences.2022; 17(1): 1451.     CrossRef
  • Single-cell multiomics reveals the complexity of TGFβ signalling to chromatin in iPSC-derived kidney organoids
    Jessica L. Davis, Ciaran Kennedy, Shane Clerkin, Niall J. Treacy, Thomas Dodd, Catherine Moss, Alison Murphy, Derek P. Brazil, Gerard Cagney, Dermot F. Brougham, Rabi Murad, Darren Finlay, Kristiina Vuori, John Crean
    Communications Biology.2022;[Epub]     CrossRef
  • Oxidized Albumin: Evaluation of Oxidative Stress as a Marker for the Progression of Kidney Disease
    Hiroshi Watanabe
    Biological and Pharmaceutical Bulletin.2022; 45(12): 1728.     CrossRef
  • Whether Renal Pathology Is an Independent Predictor for End-Stage Renal Disease in Diabetic Kidney Disease Patients with Nephrotic Range Proteinuria: A Biopsy-Based Study
    Tingli Wang, Junlin Zhang, Yiting Wang, Lijun Zhao, Yucheng Wu, Honghong Ren, Yutong Zou, Rui Zhang, Huan Xu, Zhonglin Chai, Mark Cooper, Jie Zhang, Fang Liu
    Journal of Clinical Medicine.2022; 12(1): 88.     CrossRef
  • What’s New in the Molecular Mechanisms of Diabetic Kidney Disease: Recent Advances
    Kimio Watanabe, Emiko Sato, Eikan Mishima, Mariko Miyazaki, Tetsuhiro Tanaka
    International Journal of Molecular Sciences.2022; 24(1): 570.     CrossRef
  • Clinical efficacy and safety of astragalus injection combined with ACEI/ARB in the treatment of diabetic kidney disease: Protocol for a systematic review and meta-analysis
    Zhiyue Zhu, Qi Zhang, Le Liu, Pengjie Bao, Shilin Liu, Chaoqun Song, Wenbo Yang, Zheng Nan
    Medicine.2022; 101(49): e31490.     CrossRef
  • Cudrania tricuspidata Root Extract Prevents Methylglyoxal-Induced Inflammation and Oxidative Stress via Regulation of the PKC-NOX4 Pathway in Human Kidney Cells
    Donghee Kim, Jayeon Cheon, Haelim Yoon, Hee-Sook Jun, Evangelia Dounousi
    Oxidative Medicine and Cellular Longevity.2021; 2021: 1.     CrossRef
  • Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Renoprotective Mechanisms beyond Glycemic Control
    Tomoaki Takata, Hajime Isomoto
    International Journal of Molecular Sciences.2021; 22(9): 4374.     CrossRef
  • HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review
    Kiichi Hirota
    Biomedicines.2021; 9(5): 468.     CrossRef
  • Nephropathie bei Diabetes
    Roland E. Schmieder
    CardioVasc.2021; 21(3): 31.     CrossRef
  • Clinical Predictors of Nondiabetic Kidney Disease in Patients with Diabetes: A Single-Center Study
    Francesco Fontana, Rossella Perrone, Francesco Giaroni, Gaetano Alfano, Silvia Giovanella, Giulia Ligabue, Riccardo Magistroni, Gianni Cappelli, Udeme Ekrikpo
    International Journal of Nephrology.2021; 2021: 1.     CrossRef
  • Activated Histone Acetyltransferase p300/CBP-Related Signalling Pathways Mediate Up-Regulation of NADPH Oxidase, Inflammation, and Fibrosis in Diabetic Kidney
    Alexandra-Gela Lazar, Mihaela-Loredana Vlad, Adrian Manea, Maya Simionescu, Simona-Adriana Manea
    Antioxidants.2021; 10(9): 1356.     CrossRef
  • Plasma and urine biomarkers in chronic kidney disease: closer to clinical application
    Azadeh Zabetian, Steven G. Coca
    Current Opinion in Nephrology & Hypertension.2021; 30(6): 531.     CrossRef
  • Therapeutic effect and mechanism of combined use of FGF21 and insulin on diabetic nephropathy
    Fanrui Meng, Yukai Cao, Mir Hassan Khoso, Kai Kang, Guiping Ren, Wei Xiao, Deshan Li
    Archives of Biochemistry and Biophysics.2021; 713: 109063.     CrossRef
  • Mineralocorticoid Receptor Antagonists in Diabetic Kidney Disease
    Daiji Kawanami, Yuichi Takashi, Yoshimi Muta, Naoki Oda, Dai Nagata, Hiroyuki Takahashi, Makito Tanabe
    Frontiers in Pharmacology.2021;[Epub]     CrossRef
  • Transcription Factor ChREBP Mediates High Glucose-Evoked Increase in HIF-1α Content in Epithelial Cells of Renal Proximal Tubules
    Aleksandra Owczarek, Katarzyna B. Gieczewska, Robert Jarzyna, Zuzanna Frydzinska, Katarzyna Winiarska
    International Journal of Molecular Sciences.2021; 22(24): 13299.     CrossRef
  • The effect of modern hypoglycemic therapy on the course of chronic kidney disease in patients with type 2 diabetes mellitus
    V.I. Katerenchuk
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine).2021; 17(8): 624.     CrossRef
Basic Research
Histone Deacetylase 9: Its Role in the Pathogenesis of Diabetes and Other Chronic Diseases
Siqi Hu, Eun-Hee Cho, Ji-Young Lee
Diabetes Metab J. 2020;44(2):234-244.   Published online March 24, 2020
DOI: https://doi.org/10.4093/dmj.2019.0243
  • 6,393 View
  • 161 Download
  • 20 Web of Science
  • 21 Crossref
AbstractAbstract PDFPubReader   

As a member of the class IIa histone deacetylases (HDACs), HDAC9 catalyzes the deacetylation of histones and transcription factors, commonly leading to the suppression of gene transcription. The activity of HDAC9 is regulated transcriptionally and post-translationally. HDAC9 is known to play an essential role in regulating myocyte and adipocyte differentiation and cardiac muscle development. Also, recent studies have suggested that HDAC9 is involved in the pathogenesis of chronic diseases, including cardiovascular diseases, osteoporosis, autoimmune disease, cancer, obesity, insulin resistance, and liver fibrosis. HDAC9 modulates the expression of genes related to the pathogenesis of chronic diseases by altering chromatin structure in their promotor region or reducing the transcriptional activity of their respective transcription factors. This review summarizes the current knowledge of the regulation of HDAC9 expression and activity. Also, the roles of HDAC9 in the pathogenesis of chronic diseases are discussed, along with potential underlying mechanisms.

Citations

Citations to this article as recorded by  
  • Impact of housing temperature on adipose tissue HDAC9 expression and adipogenic differentiation in high fat‐fed mice
    Samah Ahmadieh, Brandee Goo, Abdalrahman Zarzour, David Kim, Hong Shi, Praneet Veerapaneni, Ronnie Chouhaita, Nicole K. H. Yiew, Carla Dominguez Gonzalez, Akash Chakravartty, James Pennoyer, Nazeera Hassan, Tyler W. Benson, Mourad Ogbi, David J. Fulton, R
    Obesity.2024; 32(1): 107.     CrossRef
  • HDAC9 inhibition reduces skeletal muscle atrophy and enhances regeneration in mice with cigarette smoke-induced COPD
    Guixian Zheng, Chao Li, Xiaoli Chen, Zhaohui Deng, Ting Xie, Zengyu Huo, Xinyan Wei, Yanbing Huang, Xia Zeng, Yu Luo, Jing Bai
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.2024; 1870(3): 167023.     CrossRef
  • Identification of HDAC9 and ARRDC4 as potential biomarkers and targets for treatment of type 2 diabetes
    Jing Liu, Lingzhen Meng, Zhihong Liu, Ming Lu, Ruiying Wang
    Scientific Reports.2024;[Epub]     CrossRef
  • HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors
    Totan Das, Samima Khatun, Tarun Jha, Shovanlal Gayen
    Mini-Reviews in Medicinal Chemistry.2024; 24(7): 767.     CrossRef
  • Targeting histone deacetylases for cancer therapy: Trends and challenges
    Tao Liang, Fengli Wang, Reham M. Elhassan, Yongmei Cheng, Xiaolei Tang, Wengang Chen, Hao Fang, Xuben Hou
    Acta Pharmaceutica Sinica B.2023; 13(6): 2425.     CrossRef
  • Therapeutic approach of natural products that treat osteoporosis by targeting epigenetic modulation
    Guokai Zhang, Zhenying Liu, Zihan Li, Bing Zhang, Pengyu Yao, Yun Qiao
    Frontiers in Genetics.2023;[Epub]     CrossRef
  • Research Progress on Histone Deacetylase Inhibitors
    玉姜 汤
    Hans Journal of Medicinal Chemistry.2023; 11(02): 116.     CrossRef
  • HDAC9 Inhibition as a Novel Treatment for Stroke
    Hugh S. Markus
    Stroke.2023; 54(12): 3182.     CrossRef
  • Histone deacetylase 9 exacerbates podocyte injury in hyperhomocysteinemia through epigenetic repression of Klotho
    Min Liu, Yang Zhang, Ping Zhan, Wenjuan Sun, Chuanqiao Dong, Xiaohan Liu, Yujie Yang, Xiaojie Wang, Yusheng Xie, Chengjiang Gao, Huili Hu, Benkang Shi, Ziying Wang, Chun Guo, Fan Yi
    Pharmacological Research.2023; 198: 107009.     CrossRef
  • Molecular mechanism and therapeutic potential of HDAC9 in intervertebral disc degeneration
    Ming Lei, Hui Lin, Deyao Shi, Pan Hong, Hui Song, Bomansaan Herman, Zhiwei Liao, Cao Yang
    Cellular & Molecular Biology Letters.2023;[Epub]     CrossRef
  • Interindividual variability in transgene mRNA and protein production following adeno-associated virus gene therapy for hemophilia A
    Sylvia Fong, Bridget Yates, Choong-Ryoul Sihn, Aras N. Mattis, Nina Mitchell, Su Liu, Chris B. Russell, Benjamin Kim, Adebayo Lawal, Savita Rangarajan, Will Lester, Stuart Bunting, Glenn F. Pierce, K. John Pasi, Wing Yen Wong
    Nature Medicine.2022; 28(4): 789.     CrossRef
  • Active RhoA Exerts an Inhibitory Effect on the Homeostasis and Angiogenic Capacity of Human Endothelial Cells
    Michael Hauke, Robert Eckenstaler, Anne Ripperger, Anna Ender, Heike Braun, Ralf A. Benndorf
    Journal of the American Heart Association.2022;[Epub]     CrossRef
  • HDAC9 Contributes to Serous Ovarian Cancer Progression through Regulating Epithelial–Mesenchymal Transition
    Long Xu, Jian Wang, Buhan Liu, Jiaying Fu, Yuanxin Zhao, Sihang Yu, Luyan Shen, Xiaoyu Yan, Jing Su
    Biomedicines.2022; 10(2): 374.     CrossRef
  • Common protein-coding variants influence the racing phenotype in galloping racehorse breeds
    Haige Han, Beatrice A. McGivney, Lucy Allen, Dongyi Bai, Leanne R. Corduff, Gantulga Davaakhuu, Jargalsaikhan Davaasambuu, Dulguun Dorjgotov, Thomas J. Hall, Andrew J. Hemmings, Amy R. Holtby, Tuyatsetseg Jambal, Badarch Jargalsaikhan, Uyasakh Jargalsaikh
    Communications Biology.2022;[Epub]     CrossRef
  • Proposed minimal essential co-expression and physical interaction networks involved in the development of cognition impairment in human mid and late life
    Zahra Salehi, Masoud Arabfard, Omid Sadatpour, Mina Ohadi
    Neurological Sciences.2021; 42(3): 951.     CrossRef
  • Emerging roles of SIRT6 in human diseases and its modulators
    Gang Liu, Haiying Chen, Hua Liu, Wenbo Zhang, Jia Zhou
    Medicinal Research Reviews.2021; 41(2): 1089.     CrossRef
  • Quis Custodiet Ipsos Custodes (Who Controls the Controllers)? Two Decades of Studies on HDAC9
    Claudio Brancolini, Eros Di Giorgio, Luigi Formisano, Teresa Gagliano
    Life.2021; 11(2): 90.     CrossRef
  • circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis
    Huan Wan, Ting You, Wei Luo
    Frontiers in Cardiovascular Medicine.2021;[Epub]     CrossRef
  • Histone deacetylase (HDAC) 9: versatile biological functions and emerging roles in human cancer
    Chun Yang, Stéphane Croteau, Pierre Hardy
    Cellular Oncology.2021; 44(5): 997.     CrossRef
  • Dual HDAC/BRD4 inhibitors against cancer
    Negar Omidkhah, Farzin Hadizadeh, Razieh Ghodsi
    Medicinal Chemistry Research.2021; 30(10): 1822.     CrossRef
  • miR‐211‐5p is down‐regulated and a prognostic marker in bladder cancer
    Weisheng Wang, Zhiming Liu, Xuegang Zhang, Junning Liu, Junqing Gui, Maorong Cui, Yong Li
    The Journal of Gene Medicine.2020;[Epub]     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal